Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.
Either theory or evidence
Answer:
Hello there use something that looks like this
Explanation:
This is an accurate representation of something you are working on!
As you can see the wire and the core are represented on the left and is showing how it can be represented on your right hand and how they are similar!
Answer:
There would be a pressure drop in the direction of the higher opening. This will force air to move in from the lower opening and force it to leave through the higher opening. This will create a convectional movement of air, cooling and ventilating the tunnel.
Explanation:
This is in accordance with bernoulli's law of fluid flow which states that the pressure exerted by a moving fluid is lesser than it would exert if it were at rest.