To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,
The energy of the system having mass m is,

The energy of the system having mass 2m is,

For the two expressions mentioned above remember that the variables mean
m = mass
Angular velocity
A = Amplitude
The energies of the two system are same then,



Remember that

Replacing this value we have then


But the value of the mass was previously given, then



Therefore the ratio of the oscillation amplitudes it is the same.
I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
Answer:
If I'm not working I think the answer is C.
Answer:
42 degrees, virtual image, same size as the object (26 cm)
Explanation:
The law of reflection states that:
- When a ray of light is incident on a flat surface (such as the plane mirror), the angle of reflection is equal to the angle of incidence
So, since in this case the angle of incidence is 42 degrees, the angle of reflection is also 42 degrees.
Moreover, the image formed by a plane mirror is always:
- Virtual (on the same side as the object)
- The same size as the object
So in this case, since the object's size is 26 cm, the image's size is also 26 cm.
Using the given formula with v0=56 ft/s and h=40 ft
h = -16t2 + v0t
40 = -16t2 + 56t
16t2 - 56t + 40 = 0
Solving the quadratic equation:
t= (-b+/-(b^2-4ac)^1/2)/2a = (56+/-((-56)^2-4*16*40)^1/2)/2*16 = (56 +/- 24) / 32
We have two possible solutions
t1 = (56+24)/32 = 2.5
t2 = (56-24)/32 = 1
So initially the ball reach a height of 40 ft in 1 second.