Solution:
Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.
Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?
State a hypothesis- Sunlight is probably essential for plants to grow and live.
Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.
Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.
Communicate the results to others - Plants need sunlight to make food so they can live.
Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
Answer:
d. less than 20m/s
Explanation:
To the 2nd car, the first car is travelling 10m/s east and 10m/s south. So the total velocity of the first car with respect to the 2nd car is
[tex]\sqrt{10^2 + 10^2} =10\sqrt{2}=14.14m/s
As 14.14m/s is less than 20m/s. d is the correct selection for this question.
#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid