Answer:
The acceleration of the cheetahs is 10.1 m/s²
Explanation:
Hi there!
The equation of velocity of an object moving along a straight line with constant acceleration is the following:
v = v0 + a · t
Where:
v = velocity of the object at time t.
v0 = initial velocity.
a = acceleration.
t = time
We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.
Let's convert mi/h into m/s:
50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s
Then, using the equation:
v = v0 + a · t
22.4 m/s = 0 m/s + a · 2.22 s
Solving for a:
22.4 m/s / 2.22 s = a
a = 10.1 m/s²
The acceleration of the cheetahs is 10.1 m/s²
Answer: the correct answer is 7.8026035971 x 10^(-13) joule
Explanation:
Use Energy Conservation. By ``alpha decay converts'', we mean that the parent particle turns into an alpha particle and daughter particles. Adding the mass of the alpha and daughter radon, we get
m = 4.00260 u + 222.01757 u = 226.02017 u .
The parent had a mass of 226.02540 u, so clearly some mass has gone somewhere. The amount of the missing mass is
Delta m = 226.02540 u - 226.02017 u = 0.00523 u ,
which is equivalent to an energy change of
Delta E = (0.00523 u)*(931.5MeV/1u)
Delta E = 4.87 MeV
Converting 4.87 MeV to Joules
1 joule [J] = 6241506363094 mega-electrón voltio [MeV]
4 mega-electrón voltio = 6.40870932 x 10^(-13) joule
4.87 mega-electrón voltio = 7.8026035971 x 10^(-13) joule
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
Answer:
Explanation:
Volume of block A = 10 x 6 x 1 = 60 cm³
Mass of block A = 630 g
density of mass A = mass / density
= 630 / 60 = 10.5g / cm³
Volume of block B = 5 x 5 x 3 = 75 cm³
Mass of block A = 604 g
density of mass A = mass / density
= 604 / 75 = 8.05 g / cm³
Since density of both A and B are less than that of mercury , both will float in mercury.
Answer:
Explanation:
Moment of inertia of larger disk I₁ = 1/2 MR²
Moment of inertia of smaller disk I₂ = 1/2 m r ²
Initial angular velocity
We shall apply law of conservation of angular momentum .
initial total momentum = final angular momentum
I₁ X ωi = ( I₁ + I₂ )ωf
1/2 MR² x ωi = 1/2 ( m r² + MR² ) ωf
ωf = ωi / ( 1 + m r²/MR² )