answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
2 years ago
9

What is true of an object pulled inward in an electric field?

Physics
1 answer:
slava [35]2 years ago
5 0

Answer:

option b

Explanation:

There is an object pulled inward in an electric field.

We have to find out of the four options given which is true.

a) The object has a neutral charge is false since when electric field pulls the object inward, there is a charge inside.

b) The object has a charge opposite that of the field, this option is correct since there will be an equal and opposite charge created by the object

c) The object has a negative charge will be correct only if the original charge was positive hence wrong

d) The object has a charge the same as that of the field is incorrect since this would be opposite the charge

So only option b is right

You might be interested in
2.0 kg of solid gold (Au) at an initial temperature of 1000K is allowed to exchange heat with 1.5 kg of liquid gold at an initia
Elanso [62]

Answer:

Explanation:

The specific heat of gold is 129 J/kgC

It's melting point is 1336 K

It's Heat of fusion is 63000 J/kg

Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,

The first is E1 = 63000 J/kg x 1.5 = 94500 J

the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J

Therefore, all solid is not correct. You will have a mixture of solid and liquid.

For more detail, the difference between E1 and E2 is 7812 J, and that will melt

7812/63000 = 0.124 kg of the solid gold

8 0
2 years ago
A sample of an ideal gas is in a tank of constant volume. The sample absorbs heat energy so that its temperature changes from 38
oksano4ka [1.4K]

Answer:

the ratio is \frac{V_2}{V_1}=\sqrt{2}

Explanation:

Given

Initial Temperature T_1=387 KFinal Temperature T_2=774 K

The RMS velocity of molecules in a gas is given by

V_{rms}=\sqrt{\dfrac{3k_bT}{m}}

where T=temperature

k_b=constant

For T = 387K

V_1=\sqrt{\frac{3k_b\cdot 387}{m}}----1

For T = 774

V_2=\sqrt{\frac{3k_b\cdot 774}{m}}----(2)

dividing eqn 1 and eqn 2

\frac{V_2}{V_1}=\sqrt{\frac{774}{387}}

\frac{V_2}{V_1}=\sqrt{2}

Thus,the ratio is \frac{V_2}{V_1}=\sqrt{2}

5 0
2 years ago
Read 2 more answers
A rock is dropped from the top of a tall building. The rock's displacement in the last second before it hits the ground is 46 %
olasank [31]

Answer:

height is 69.68 m

Explanation:

given data

before it hits the ground =  46 % of entire distance

to find out

the height

solution

we know here acceleration and displacement that is

d = (0.5)gt²     ..............1

here d is distance and g is  acceleration and t is time

so when object falling it will be

h = 4.9 t²   ....................2

and in 1st part of question

we have (100% - 46% ) = 54 %

so falling objects will be there

0.54 h = 4.9 (t-1)²       ...................3

so

now we have 2 equation with unknown

we equate both equation

1st equation already solve for h

substitute h in the second equation and find t

0.54 × 4.9 t² = 4.9 (t-1)²  

t = 0.576 s and  3.771 s

we use here 3.771 s because  0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls

so take t = 3.771 s

then h from equation 2

h = 4.9 t²

h = 4.9 (3.771)²

h =  69.68 m

so height is 69.68 m

6 0
2 years ago
A small glass bead charged to 8.0 nC is in the plane that bisects a thin, uniformly charged, 10-cm long glass rod and is 4.0 cm
Assoli18 [71]

Answer:

71nC is the total charge of the rod

Explanation:

See attached file

8 0
1 year ago
When water flows from a faucet, the water molecules tend to join together and form a stream. Which of the four fundamental force
Yuki888 [10]
The fundamental force responsible for the cohesion of the water molecules leaving the faucet is the electromagnetic force.
Electromagnetic forces act on particles that are electrically charged. Water molecules are polar, which means that they have a positively charged end and a negatively charged end. This polarity arises from the fact that oxygen pulls the electrons in the molecule towards itself and attains a negative charge, while the hydrogen atoms in the molecules are left with a positive charge.
3 0
2 years ago
Read 2 more answers
Other questions:
  • in a thermal power plant, heat from the flue gases is recovered in (A) chimney (B) de-super heater (C) economizer (D) condenser
    6·1 answer
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • 2H2S(g)⇌2H2(g)+S2(g),Kc=1.67×10−7 at 800∘C is carried out at the same temperature with the following initial concentrations: [H2
    6·2 answers
  • To calibrate your calorimeter cup, you first put 45 mL of cold water in the cup, and measure its temperature to be 24.7 °C. You
    7·1 answer
  • A rifle, which has a mass of 5.50 kg., is used to fire a bullet, which has a massof m = 65.0 grams., at a "ballistics pendulum".
    6·1 answer
  • A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
    5·1 answer
  • A new technology company is marketing drones for residential use. The bar graph shows the relation between number of sales and t
    12·1 answer
  • Rubber rods charged by rubbing with cat fur repel each other. Glass rods charged by rubbing with silk repel each other. A rubber
    13·1 answer
  • An object of mass M is dropped near the surface of Earth such that the gravitational field provides a constant downward force on
    9·1 answer
  • the container is filled with liquid. the depth of liquid is 60 cm. if it is exerting the pressure of 2000pa. calculate the densi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!