The wavelength emitted is indirectly proportional to the difference in the change in the energy level. For the wavelength 278 nm the change in energy level is significantly high. Further change in energy level is indicated by 454nm light but the difference in energy level for this wavelength to be emitted is not greater than the previous one. There is a possibility that these subsystems have now very low energy which should result in wavelengths ranging from 700 to 900 nm. There is another possibility that there is some metastable subsystems in the system which may cause LASER emission.
I can't seem to figure out the angle between T1 and T2. So suppose, it is 10º; then T2 makes an angle of 35º w/r/t horizontal, and T1 makes an angle of 45º.
Sum the moments about the base of the crane; Σ M = 0. 0 = T2*cos35*L*cos40 + T1*cos45*L*cos40 - T2*sin35*L*sin40 - T1*sin45*L*sin40 - W*(L/2)*sin40 - T1*L*sin40 → length L cancels where W = 18 kN
0 = 0.259*T2 - 43kN T2 = 166 kN
Answer:
As the person moves down the zip wire, her increase in kinetic energy is less than her decrease in gravitational potential energy.
Explanation:
Work is done against the air resistance, causing thermal energy to transfer to the surroundings
Answer:
I am not a driver, but I think it's C.
Explanation:
Answer:
The current is 2.0 A.
(A) is correct option.
Explanation:
Given that,
Length = 150 m
Radius = 0.15 mm
Current density
We need to calculate the current
Using formula of current density


Where, J = current density
A = area
I = current
Put the value into the formula


Hence, The current is 2.0 A.