answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
1 year ago
14

Give three factors that affected the kinetic energy of the person as she reached the bottom

Physics
1 answer:
soldier1979 [14.2K]1 year ago
4 0

Answer:

As the person moves down the zip wire, her increase in kinetic energy is less than her decrease in gravitational potential energy.

Explanation:

Work is done against the air resistance, causing thermal energy to transfer to the surroundings

You might be interested in
Someone who wants to sell you a Superball claims that it will bounce to a height greater than the height from which it is droppe
sergeinik [125]

Answer:

No

Explanation:

Unless there are other external forces, this will never be true. Because according to energy conservation, potential energy will be converted to kinetic energy as the ball falls down (so it loses height and gain speed). And vice versa, kinetic to potential when it bounces back. So the potential energy after must be the same (or smaller if losing heat to external environment), so it can only get the the same height or less, but not more.

7 0
2 years ago
The minute hand of a wall clock measures 16 cm from its tip to the axis about which it rotates. The magnitude and angle of the d
olya-2409 [2.1K]

Answer:

Explanation:

Given

Minute hand length =16 cm

Time at a quarter after the hour to half past i.e. 1 hr 45 min

Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270

|r|=\frac{3\times 2\pi r}{4}=75.408 cm

Angle =270^{\circ}

(c)For the next half hour

Effectively it has covered 2 revolution and a quarter

|r|=\frac{2\pi r}{4}=25.136 cm

angle turned =90^{\circ}

(f)Hour after that

After an hour it again comes back to its original position thus displacement is same =25.136

Angle turned will also be same i.e. 90 ^{\circ}

7 0
2 years ago
A superman cyclist rode a bike uphill at 20 miles/hour for two hours. To sustain this constant speed the cyclist was exerting 50
NeX [460]

Answer:

1.056 x 10⁷ lb-ft

Explanation:

v = Speed of the bike = 20 mph

t = time of travel = 2 h

d = distance traveled by cyclist

Distance traveled by cyclist is given as

d = v t

d = (20) (2)

d = 40 miles

We know that, 1 mile = 5280 ft

d = 40 (5280) ft

d = 211200 ft

F = force applied by cyclist = 50 lb

W = work done by cyclist

Work done by cyclist is given as

W = F d

W = (50) (211200)

W = 1.056 x 10⁷ lb-ft

5 0
2 years ago
You must determine the length of a long, thin wire that is suspended from the ceiling in the atrium of a tall building. A 2.00-c
AleksAgata [21]

Answer:

Explanation:

Let L be the length of the wire.

velocity of pulse wave v = L / 24.7 x 10⁻³ = 40.48 L  m /s

mass per unit length of the wire m = 14.5 x 10⁻⁶ x 10⁻³ / 2 x 10⁻² kg / m

m = 7.25 x 10⁻⁷ kg / m

Tension in the wire = Mg  , M is mass hanged from lower end.

= .4 x 9.8

= 3.92 N

expression for velocity of wave in the wire

v = \sqrt{\frac{T}{m} }    , T is tension in the wire , m is mass per unit length of wire .

40.48 L = \sqrt{\frac{3.92}{7.25\times10^{-7}} }

1638.63 L² = 3.92 / (7.25 x 10⁻⁷)

L² = 3.92 x 10⁷ / (7.25 x 1638.63 )

L² = 3299.64

L = 57.44 m /s

5 0
2 years ago
Suppose you wanted to hold up an electron against the force of gravity by the attraction of a fixed proton some distance above i
SCORPION-xisa [38]

Answer:

The value is  r =  5.077 \  m

Explanation:

From the question we are told that

   The  Coulomb constant is  k =  9.0 *10^{9} \  N\cdot  m^2  /C^2

   The  charge on the electron/proton  is  e =  1.6*10^{-19} \  C

    The  mass of proton m_{proton} =  1.67*10^{-27} \  kg

    The  mass of  electron is  m_{electron } =  9.11 *10^{-31} \ kg

Generally for the electron to be held up by the force gravity

   Then    

       Electric force on the electron  =  The  gravitational Force

i.e  

            m_{electron} *  g  = \frac{ k *  e^2  }{r^2 }

         \frac{9*10^9 *  (1.60 *10^{-19})^2  }{r^2 }  =     9.11 *10^{-31 }  *  9.81

         r =  \sqrt{25.78}

         r =  5.077  \  m

7 0
2 years ago
Other questions:
  • The upper end of a 3.80-m-long steel wire is fastened to the ceiling, and a 54.0-kg object is suspended from the lower end of th
    14·1 answer
  • A 25 pF parallel-plate capacitor with an air gap between the plates is connected to a 100 V battery. A Teflon slab is then inser
    7·1 answer
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located
    13·1 answer
  • An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and 6.0×10^3 N/C, respecti
    11·1 answer
  • Waves are observed to splash upon the rocks at the shore every 6.0
    10·1 answer
  • Water is made of two hydrogen atoms and one oxygen atom bonded together. Julia is describing how water undergoes a physical chan
    15·2 answers
  • Two spherical shells have their mass uniformly distrubuted over the spherical surface. One of the shells has a diameter of 2 met
    11·1 answer
  • What is the speed of light (in m/s) in air? (Enter your answer to at least four significant figures. Assume the speed of light i
    5·1 answer
  • A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!