answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
2 years ago
8

Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual

ly be converted into sweat and evaporate. If you drink a 20.0-ounce bottle of water that had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat , knowing 1ml contains 0.03 ounces? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.)
Physics
1 answer:
kotegsom [21]2 years ago
4 0

Answer:

The amount of heat required is H_t =  1.37 *10^{6} \ J

Explanation:

From the question we are told that

The mass of water is m_w  =  20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g

The temperature of the water before drinking is T_w  =  3.8 ^oC

The temperature of the body is T_b  =  36.6^oC

Generally the amount of heat required to move the water from its former temperature to the body temperature is

H=  m_w  *  c_w * \Delta T

Here c_w is the specific heat of water with value c_w = 4.18 J/g^oC

So

H=   5.7 *10^2 * 4.18 * (36.6 - 3.8)

=> H= 7.8 *10^{4} \  J

Generally the no of mole of sweat present mass of water is

n = \frac{m_w}{Z_s}

Here Z_w is the molar mass of sweat with value

Z_w =  18.015 g/mol

=> n = \frac{5.7 *10^2}{18.015}

=> n = 31.6 \  moles

Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

H_v  =  n  *  L_v

Here L_v is the latent heat of vaporization with value L_v  = 7 *10^{3} J/mol

=> H_v  =  31.6 * 7 *10^{3}

=> H_v  = 1.29 *10^{6} \  J

Generally the overall amount of heat energy required is

H_t =  H +  H_v

=> H_t =  7.8 *10^{4} +  1.29 *10^{6}

=> H_t =  1.37 *10^{6} \ J

You might be interested in
You need to determine the density of an unknown liquid and decide to perform an experiment. You notice that a wooden block float
Allushta [10]

Answer:

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

Explanation:

The density of a liquid is inversely proportional to the volume (height) of object submerged in it.

High density liquid possess higher buoyant force preventing objects from submerging.

p ∝ 1/V ∝ 1/h

since V = Ah

pu/pw = hw/hu

pu = pwhw/hu

Where;

p = density

h = height submerged

pu and pw is the density of unknown liquid and water respectively

hu and hw is the height of object submerged in unknown liquid and water respectively

pw = 1000kg/m^3

hu = 4.6cm = 0.046m

hw = 5.8cm = 0.058m

Substituting the given values;

pu = 1000×0.058/0.046

pu = 1260.9kg/m^3

the density of the unknown liquid is 1260.9kg/m^3

5 0
2 years ago
A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
alina1380 [7]

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

3 0
2 years ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
2 years ago
1. Susie wondered if the height of a hole punched in the side of a quart-size milk carton would affect how far from the containe
sdas [7]
Hypothesis: The water will squirt far.
Indep.V.: Height of hole.
Depend.V.: Range of squirt
Constant: Everything that isnt the independant var. such as filled liquid.
Control: None,I believe.
Number of groups: 4
Trials per group: 4
7 0
2 years ago
Read 2 more answers
Three equal negative point charges are placed at three of the corners of a square of side d. What is the magnitude of the net el
Rina8888 [55]
<span>this  may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • Which amplitude of the following longitudinal waves has the greatest energy?
    12·2 answers
  • Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
    13·2 answers
  • Deltas, like this one, are formed at the mouth of a river. They are formed by the ___________ of sediments, soil, sand, gravel,
    10·2 answers
  • When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
    8·2 answers
  • Tapping the surface of a pan of water generates 17.5 waves per second. If the wavelength of each wave is 45 cm, what is the spee
    6·1 answer
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary
    8·1 answer
  • An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
    15·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
  • A 15.0 g bullet traveling horizontally at 865 m&gt;s passes through a tank containing 13.5 kg of water and emerges with a speed
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!