Answer: (a) The gravitational force on the object at the North Pole of Neptune is 51.7N
(b) The apparent weight of the object at Neptune's equator is 50.4N
Explanation: Please see the attachments below
3.1 the only reason i know this is cause i got it wrong
For the answer to the question above,
<span>Q = amount of heat (kJ) </span>
<span>cp = specific heat capacity (kJ/kg.K) = 4.187 kJ/kgK </span>
<span>m = mass (kg) </span>
<span>dT = temperature difference between hot and cold side (K). Note: dt in °C = dt in Kelvin </span>
<span>Q = 100kg * (4.187 kJ/kgK) * 15 K </span>
<span>Q = 6,280.5 KJ = 6,280,500 J = 1,501,075.5 cal</span>
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west
Answer:
Fa=774 N
Fb=346 N
Explanation:
We will solve this problem by equating forces on each axis.
- On x-axis let forces in positive x-direction be positive and forces in negative x-direction be negative
- On y-axis let forces in positive y-direction be positive and forces in negative y-direction be negative
While towing we know that car is mot moving in y-direction so net force in y-axis must be zero
⇒∑Fy=0
⇒
⇒
⇒
Given that resultant force on car is 950N in positive x-direction
⇒∑Fx=950
⇒
⇒
⇒
⇒
⇒
⇒ 
⇒


Therefore approximately, Fa=774 N and Fb=346 N