answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
1 year ago
16

At the normal boiling temperature of iron, TB = 3330 K, the rate of change of the vapor pressure of liquid iron with temperature

is 3.72 x 10-3 atm/K. Calculate the molar latent enthalpy of boiling of iron at 3330 K:
Physics
2 answers:
Margaret [11]1 year ago
8 0

The molar latent enthalpy of boiling of iron at 3330 K is  ΔH = 342 \times 10^3 J.

<u>Explanation:</u>

Molar enthalpy of fusion is the amount of energy needed to change one mole of a substance from the solid phase to the liquid phase at constant temperature and pressure.

                      d ln p = (ΔH / RT^2) dt

                   (1/p) dp = (ΔH / RT^2) dt

                    dp / dt = p (ΔH / RT^2) = 3.72 \times 10^-3

                  (p) (ΔH) / (8.31) (3330)^2 = 3.72 \times 10^-3

                          ΔH = 342 \times 10^3 J.

Guest1 year ago
0 0

H = 102,94

You might be interested in
What is the maximum negative displacement a dog could have if it started its motion at +3 m?
raketka [301]

Answer:

- 3 meter

Explanation:

A dog has started motion from +3 meter. ...(Given)

∴ maximum positive distance = + 3 meter

Magnitude of distance = 3

Maximum negative distance = (-) (magnitude of distance)

Maximum negative distance = (-) (3)

Maximum negative distance = -3 meter

Hence, maximum negative distance is -3 meter.

7 0
1 year ago
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
Two identical horizontal sheets of glass have a thin film of air of thickness t between them. The glass has refractive index 1.4
Gre4nikov [31]

Answer:

the wavelength λ of the light when it is traveling in air = 560 nm

the smallest thickness t of the air film = 140 nm

Explanation:

From the question; the path difference is Δx = 2t  (since the condition of the phase difference in the maxima and minima gets interchanged)

Now for constructive interference;

Δx= (m+ \frac{1}{2} \lambda)

replacing ;

Δx = 2t   ; we have:

2t = (m+ \frac{1}{2} \lambda)

Given that thickness t = 700 nm

Then

2× 700 = (m+ \frac{1}{2} \lambda)     --- equation (1)

For thickness t = 980 nm that is next to constructive interference

2× 980 = (m+ \frac{1}{2} \lambda)     ----- equation (2)

Equating the difference of equation (2) and equation (1); we have:'

λ = (2 × 980) - ( 2× 700 )

λ = 1960 - 1400

λ = 560 nm

Thus;  the wavelength λ of the light when it is traveling in air = 560 nm

b)  

For the smallest thickness t_{min} ; \ \ \ m =0

∴ 2t_{min} =\frac{\lambda}{2}

t_{min} =\frac{\lambda}{4}

t_{min} =\frac{560}{4}

t_{min} =140 \ \  nm

Thus, the smallest thickness t of the air film = 140 nm

7 0
2 years ago
Read 2 more answers
Lidia plans an experimental investigation to see how the thickness of a lens affects the point where a beam of light is focused.
alexandr1967 [171]

Answer:

The type of light and the material of lenz.

Explanation:

1) As the investigation is based on how the thickness of a lens effect the other variable. Thickness of the lenz is independent variable. So Lidia has to experiment with the different thicknesses in order to find the effect on dependent variable.

2) As the investigation is based to find the point where the beam of light is focused. It's a dependent variable and Lidia has no control over it. So the only thing she can do is to measure and observe how it respond to the changes in independent variable.

3) For conclusion, she has to make sure that the other variables are not effecting the output or results that is the beam point where the light is focused. So she must have to kept constant the type of light and material of lenz otherwise she won't be able to discriminate the effect of thickness of lenz from other causes.

8 0
2 years ago
On her way home from work, Brenda drove 20 miles at 60 miles per hour. Due to poor weather conditions, she then reduced her spee
rjkz [21]

Answer:

D

Explanation:

Speed = distance / time

her time for the first journey = 20 miles / 60 miles/hr = 1/3 hr

her time for second part of the journey = her remaining distance / her speed = (80 - 20) miles / 30 miles/hr = 60 miles / 30 miles/hr = 2 hrs

total time spend by her = 2 hr+ 1/3 hr = 2 1/3 hrs

her traveling the distance at 40 miles per hour = 80 miles / 40 miles /hr = 2 hrs

the time less she would drive if she drive the entire distance at 40 miles/hr =   2 1/3 hrs - 2 hrs = 1/3 hr

3 0
2 years ago
Other questions:
  • Consider two objects whose masses are 100 g and 200 g. The smaller object strikes the larger object with a force of 500 N. Accor
    11·2 answers
  • Why is platinum used sparingly in technological applications?
    12·1 answer
  • When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
    8·2 answers
  • what is a possible unit for the product VI, where V is the potential difference across a resistor and I is the current through t
    14·1 answer
  • What is the Physics Primer?
    15·2 answers
  • What is the change in entropy of helium gas with total mass 0.135 kg at the normal boiling point of helium when it all condenses
    13·1 answer
  • Part A At t tt = 2.0 s s , what is the particle's position? Express your answer to two significant figures and include the appro
    15·1 answer
  • The image shows the electric field lines around two charged particles. 2 balls separated vertically. Lines with arrowheads run f
    14·2 answers
  • Adam is teeing off on hole number two. The hole is 390 yards away. It is a par four hole. What club should he use to tee off? Ex
    5·1 answer
  • According to the nebular theory of solar system formation, what key difference in their early formation explains why the jovian
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!