Answer:
The decelerating force is 
Solution:
As per the question:
Frontal Area, A = 
Speed of the spaceship, v = 
Mass density of dust, 
Now, to calculate the average decelerating force exerted by the particle:
(1)
Volume, 
Thus substituting the value of volume, V in eqn (1):

where
A = Area
v = velocity
t = time
(2)

From Newton's second law of motion:

Thus differentiating w.r.t time 't':

where
= average decelerating force of the particle
Now, substituting suitable values in the above eqn:

Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)
Answer:
IV: type of shampoo used
DV: what shampoo made her hair the skinniest
control: water
Constant: rated from scale from 1-10
Explanation:
wave function of a particle with mass m is given by ψ(x)={ Acosαx −
π
2α
≤x≤+
π
2α
0 otherwise , where α=1.00×1010/m.
(a) Find the normalization constant.
(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.
(c) Find the particle’s average position.
(d) Find its average momentum.
(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N