answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
2 years ago
10

You catch a volleyball (mass 0.270 kg) that is moving downward at 7.50 m/s. In stopping the ball, your hands and the volleyball

descend together a distance of 0.150 m.
How much work do your hands do on the volleyball in the process of stopping it?
What is the magnitude of the force (assumed constant) that your hands exert on the volleyball?
Physics
1 answer:
sesenic [268]2 years ago
3 0

Explanation:

The work done equals the change in energy.

W = ΔKE

W = 0 − ½mv²

W = -½ (0.270 kg) (-7.50 m/s)²

W = -7.59 J

Work is force times displacement.

W = Fd

-7.59 J = F (-0.150 m)

F = 50.6 N

You might be interested in
The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
Katena32 [7]

Answer:

P=740 KPa

Δ=7.4 mm

Explanation:

Given that

Diameter of plunger,d=30 mm

Diameter of sleeve ,D=32 mm

Length .L=50 mm

E= 5 MPa

n=0.45

As we know that

Lateral strain

\varepsilon _t=\dfrac{D-d}{d}

\varepsilon _t=\dfrac{32-30}{30}

\varepsilon _t=0.0667

We know that

n=-\dfrac{\epsilon _t}{\varepsilon _{long}}

\varepsilon _{long}=-\dfrac{\epsilon _t}{n}

\varepsilon _{long}=-\dfrac{0.0667}{0.45}

\varepsilon _{long}=-0.148

So the axial pressure

P=E\times \varepsilon _{long}

P=5\times 0.148

P=740 KPa

The movement in the sleeve

\Delta =\varepsilon _{long}\times L

\Delta =0.148\times 50

Δ=7.4 mm

6 0
2 years ago
The weights of a large number of miniature poodles are approximately normally distributed with a mean of 99 kilograms and a stan
Karo-lina-s [1.5K]

Answer:

See explanation below

Explanation:

As I say in the comments, the question is incomplete, however, I will try to answer this by using data that I found on another site.

This is the part of the question that is not here:

If measurements are recorded to the nearest

tenth of a kilogram, find the fraction of these poodles

with weights

(a) over 9.5 kilograms;

(b) of at most 8.6 kilograms;

So, assuming a mean of 8 kg, and 0.9 of standard deviation, let X represents the weight of the poodles

The expression to calculate the fraction of poodle needed is:

Z = X - u / d

u: weight of the large number of poodle

d: standard deviation

Replacing data of a) wer have:

Z = 9.5 - 8 / 0.9

Z = 1.67

With this value, we need to take the value of Z, and see the area under the curve of standard deviation (see table attached)

Therefore:

P (X > 9.5) = P(Z > 1.67) = 0.5 - P (Z < 1.67) = 0.5 - 0.4525 = 0.0475

b) In this part, is the same as part a) so:

Z = 8.6 - 8 / 0.9 = 0.67

The value for area in the curve is 0.2486 so:

P = 0.5 + 0.2486 = 0.7486

Hope this helps

8 0
2 years ago
Study the free body diagram above. Which scenario below can best be described with this free body diagram? A. a cup is at rest o
vekshin1

Answer: D

Explanation:

5 0
2 years ago
The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
KonstantinChe [14]

Answer:

Acceleration, a=1.2\ m/s^2

Explanation:

Given that,

The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope, m = 100 kg

Force exerted by the doges on the rope attached to the front sled, F = 240 N

To find,

The acceleration of the sleds.

Solution,

Let a is the acceleration of the sleds. The product of mass and acceleration is called force. Its expression is given by :

F = ma

a=\dfrac{F}{m}

a=\dfrac{240\ N}{2\times 100\ kg} (m = 2m)

a=1.2\ m/s^2

So, the acceleration of the sleds is 1.2\ m/s^2.

6 0
2 years ago
Oceanographers use submerged sonar systems, towed by a cable from a ship, to map the ocean floor. In addition to their downward
KATRIN_1 [288]

Answer:

Tension in the cable is T = 16653.32 N

Explanation:

Give data:

Cross section Area A = 1.3 m^2

Drag coefficient CD = 1.2

Velocity V = 4.3 m/s

Angle made by cable with horizontal  =30 degree

Density \rho \ of\  water= 1000 kg/m3

 Drag force FD is given as

F_{D} = \fracP{1}{2} \rho v^{2} C_{D} A

        = 0.5\times 1000\times 4.32\times  1.2\times 1.3

Drag force = 14422.2 N acting opposite to the motion

As cable made angle  of 30 degree with horizontal  thus horizontal component is take into action to calculate drag force

TCos30 = F_D

T = \frac{F_D}{cos30}

T =\frac{ 14422.2}{cos 30}

T = 16653.32 N

7 0
2 years ago
Other questions:
  • Synthetic plastics are made by linking many simple carbon molecules together to form much larger molecules. This process is call
    8·1 answer
  • Imagine that you are sitting in a closed room (no windows, no doors) when, magically, it is lifted from Earth and sent accelerat
    14·1 answer
  • A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of
    6·1 answer
  • The blood plays an important role in removing heat from th ebody by bringing the heat directly to the surface where it can radia
    13·1 answer
  • A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is
    12·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • A mass is oscillating horizontally on a spring. At the locations A, B, C, D, and E, photogates are used to measure the speed of
    7·1 answer
  • A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26
    5·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
  • A solid weighs 237.5 g in air and 12.5 g in a liquid in which it is wholly submerged. The density of the liquid is 900 kg/m³.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!