Answer:
Explanation:
Given
Original Frequency 
apparent Frequency 
There is change in frequency whenever source move relative to the observer.
From Doppler effect we can write as

where
apparent frequency
v=velocity of sound in the given media
velocity of source
velocity of observer
here 




i.e.fork acquired a velocity of 
distance traveled by fork is given by

where v=final velocity
u=initial velocity
a=acceleration
s=displacement



Answer:
t = 103.45 n m
Explanation:
given,
refractive index of cornea = 1.38
refractive index of eye drop = 1.45
wavelength of refractive index = 600 nm
refractive index of eye drop is greater than refractive index of cornea and the air.
Formula used in this case
for constructive interference

At m = 0 for the minimum thickness, so
t = 103.45 n m
the minimum thickness of the film of eyedrops t = 103.45 n m
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
This question is in complete.The question is
A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.
Answer:
distance=0.124 m
Explanation:

Answer: 0.98m
Explanation:
P = -74 mm Hg = 9605 Pa = 9709N/m^2
= 9605 kg m/s^2/m^2
density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3
Pressure equation: P = rho g h
h = P/(rho g)
h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)
h = 0.98 m
0.98m is the maximum depth he could have been.