answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
2 years ago
6

A Thomson's gazelle can run at very high speeds, but its acceleration is relatively modest. A reasonable model for the sprint of

a gazelle assumes an acceleration of 4.2m/s2
for 6.5 s, after which the gazelle continues continues at a steady speed.
a. What is the gazelle's top speed?
b. A human would win a very short race with a gazelle. The best time for a 30 m sprint for a human runner is 3.6 s. How much time would the gazelle take for a 30 m race?
c. A gazelle would win a longer race. The best time for a 200 m sprint for a human runner is 19.3s.
How much time would the gazelle take for a 200 m race?
Physics
1 answer:
Lyrx [107]2 years ago
4 0

Answer:

a) 27.3 m/s

b) 3.78 s

c) 10.576 s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

a)

v=u+at\\\Rightarrow v=0+4.2\times 6.5\\\Rightarrow v=27.3\ m/s

Top speed of the gazelle is 27.3 m/s

b)

s=ut+\frac{1}{2}at^2\\\Rightarrow 30=0t+\frac{1}{2}\times 4.2\times t^2\\\Rightarrow t=\sqrt{\frac{30\times 2}{4.2}}\\\Rightarrow t=3.78\ s

The gazelle would take 3.78 seconds to win a 30 m race.

c)

s=ut+\frac{1}{2}at^2\\\Rightarrow s=0\times 6.5+\frac{1}{2}\times 4.2\times 6.5^2\\\Rightarrow s=88.725\ m

The gazelle would go 88.725 m with the acceleration after which there will be no acceleration.

Time = Distance / Speed

\text{Time}=\frac{200-88.725}{27.3}=4.076\ s

Total time taken by the gazelle to cover 200 m would be 6.5+4.076 = 10.576 seconds

You might be interested in
A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
Roman55 [17]

Let \theta be the direction the swimmer must swim relative to east. Then her velocity relative to the water is

\vec v_{S/W}=\left(4.0\dfrac{\rm km}{\rm h}\right)(\cos\theta\,\vec\imath+\sin\theta\,\vec\jmath)

The current has velocity vector (relative to the Earth)

\vec v_{W/E}=\left(3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath

The swimmer's resultant velocity (her velocity relative to the Earth) is then

\vec v_{S/E}=\vec v_{S/W}+\vec v_{W/E}

\vec v_{S/E}=\left(\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath+\left(4.0\dfrac{\rm km}{\rm h}\right)\sin\theta\,\vec\jmath

We want the resultant vector to be pointing straight north, which means its horizontal component must be 0:

\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}=0\implies\cos\theta=-\dfrac{3.0}{4.0}\implies\theta\approx138.59^\circ

which is approximately 41º west of north.

6 0
2 years ago
A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is
Step2247 [10]

Answer:

The decelerating force is 3\times 10^{- 11}\ N

Solution:

As per the question:

Frontal Area, A = 10\ m^{2}

Speed of the spaceship, v = 1\times 10^{6}\ m/s

Mass density of dust, \rho_{d} = 3\times 10^{- 18}\ kg/m^{3}

Now, to calculate the average decelerating force exerted by the particle:

Mass,\ m = \rho_{d}V                                (1)

Volume, V = A\times v\times t

Thus substituting the value of volume, V in eqn (1):

m = \rho_{d}(Avt)

where

A = Area

v = velocity

t = time

m = \rho_{d}(A\times v\times t)                  (2)

Momentum,\ p = \rho_{d}(Avt)v = \rho_{d}Av^{2}t

From Newton's second law of motion:

F = \frac{dp}{dt}

Thus differentiating w.r.t time 't':

F_{avg} = \frac{d}{dt}(\rho_{d}Av^{2}t) = \rho_{d}Av^{2}

where

F_{avg} = average decelerating force of the particle

Now, substituting suitable values in the above eqn:

F_{avg} = 3\times 10^{- 18}\times 10\times 1\times 10^{6} = 3\times 10^{- 11}\ N

4 0
2 years ago
Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
trasher [3.6K]
<span>If the maximum permissible limit for depression of the structure is 20 centimeters, the number of floors that can be safely added to the building is </span><span>C. 18</span>

depression = (depression/floor)(# floors) < 20

Here are the following choices:
<span>A. 14
B. 15
C. 18
D. 23</span>
8 0
2 years ago
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
During a compaction test in the lab a cylindrical mold with a diameter of 4in and a height of 4.58in was filled. The compacted s
Ray Of Light [21]

Answer:

part a : <em>The dry unit weight is 0.0616  </em>lb/in^3<em />

part b : <em>The void ratio is 0.77</em>

part c :  <em>Degree of Saturation is 0.43</em>

part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>

Explanation:

Part a

Dry Unit Weight

The dry unit weight is given as

\gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}

Here

  • \gamma_d is the dry unit weight which is to be calculated
  • γ is the bulk unit weight given as

                                              \gamma =weight/Volume \\\gamma= 4 lb / \pi r^2 h\\\gamma= 4 lb / \pi (4/2)^2 \times 4.58\\\gamma= 4 lb / 57.55\\\gamma= 0.069 lb/in^3

  • w is the moisture content in percentage, given as 12%

Substituting values

                                              \gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}\\\gamma_{d}=\frac{0.069}{1+\frac{12}{100}} \\\gamma_{d}=\frac{0.069}{1.12}\\\gamma_{d}=0.0616 lb/in^3

<em>The dry unit weight is 0.0616  </em>lb/in^3<em />

Part b

Void Ratio

The void ratio is given as

                                                e=\frac{G_s \gamma_w}{\gamma_d} -1

Here

  • e is the void ratio which is to be calculated
  • \gamma_d is the dry unit weight which is calculated in part a
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72

Substituting values

                                              e=\frac{G_s \gamma_w}{\gamma_d} -1\\e=\frac{2.72 \times 0.04}{0.0616} -1\\e=1.766 -1\\e=0.766

<em>The void ratio is 0.77</em>

Part c

Degree of Saturation

Degree of Saturation is given as

S=\frac{G w}{e}

Here

  • e is the void ratio which is calculated in part b
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

Substituting values

                                      S=\frac{G w}{e}\\S=\frac{2.72 \times .12}{0.766}\\S=0.4261

<em>Degree of Saturation is 0.43</em>

Part d

Additional Water needed

For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

\gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}

Here

  • \gamma_{zav} is  the zero air unit weight which is to be calculated
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

                                      \gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}\\\gamma_{zav}=\frac{0.04}{0.12+\frac{1}{2.72}}\\\gamma_{zav}=\frac{0.04}{0.4876}\\\gamma_{zav}=0.08202 lb/in^3\\

Now as the volume is known, the the overall weight is given as

weight=\gamma_{zav} \times V\\weight=0.08202 \times 57.55\\weight=4.72 lb

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.

4 0
2 years ago
Other questions:
  • A beam of monochromatic light (f =5.09 ×1014 Hz) has a wavelength of 589 nanometers in air. What is the wavelength of this light
    6·1 answer
  • A conveyer belt moves a 40 kg box at a velocity of 2 m/s. What is the kinetic energy of the box while it is on the conveyor belt
    14·2 answers
  • The space shuttle is descending through the earth's atmosphere. How is the force of gravity affected?
    9·2 answers
  • Smoking increases ____ levels in the blood, thus increasing the possibility of unwanted clotting.
    14·1 answer
  • A satellite, orbiting the earth at the equator at an altitude of 400 km, has an antenna that can be modeled as a 1.76-m-long rod
    15·1 answer
  • An automatic coffee maker uses a resistive heating element to boil the 2.4 kg of water that was poured into it at 21 °C. The cur
    15·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed
    14·1 answer
  • Shows an object suspended from two ropes. The weight of the object is 360 N. The magnitude of the tension
    11·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!