Answer:
T₂ =602 °C
Explanation:
Given that
T₁ = 227°C =227+273 K
T₁ =500 k
Gauge pressure at condition 1 given = 100 KPa
The absolute pressure at condition 1 will be
P₁ = 100 + 100 KPa
P₁ =200 KPa
Gauge pressure at condition 2 given = 250 KPa
The absolute pressure at condition 2 will be
P₂ = 250 + 100 KPa
P₂ =350 KPa
The temperature at condition 2 = T₂
We know that

T₂ = 875 K
T₂ =875- 273 °C
T₂ =602 °C
Answer: 592.37m
Explanation:
Person D is the blue line.
The total displacement is equal to the difference between the final position and the initial position, if the initial position is (0,0) we have that he first goes down two blocks, then right 6 blocks. then up 4 blocks, then left 1 block.
Now i will considerate that the positive x-axis is to the right and the positive y-axis is upwards.
Then the new position will be, if B is a block:
P =(6*B - 1*B, -2*B + 4*B) = (5*B, 2*B)
And we know that B = 110m
P = (550m, 220m)
Now, then the displacement will be equal to the magnitude of our vector, (because the difference between P and the initial position is equal to P, as the initial position is (0,0)) this is:
P = √(550^2 + 220^2) = 592.37m
Motion map has the points spaced farther apart (because the car would go a
further distance in each second), and the velocity vectors (arrows) are longer, because the car is
moving faster. So 'with longer vectors' is the correct answer
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter
