Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.
Answer:
Given that
V= 0.06 m³
Cv= 2.5 R= 5/2 R
T₁=500 K
P₁=1 bar
Heat addition = 15000 J
We know that heat addition at constant volume process ( rigid vessel ) given as
Q = n Cv ΔT
We know that
P V = n R T
n=PV/RT
n= (100 x 0.06)(500 x 8.314)
n=1.443 mol
So
Q = n Cv ΔT
15000 = 1.433 x 2.5 x 8.314 ( T₂-500)
T₂=1000.12 K
We know that at constant volume process
P₂/P₁=T₂/T₁
P₂/1 = 1000.21/500
P₂= 2 bar
Entropy change given as

Cp-Cv= R
Cp=7/2 R
Now by putting the values


a)ΔS= 20.79 J/K
b)
If the process is adiabatic it means that heat transfer is zero.
So
ΔS= 20.79 J/K
We know that

Process is adiabatic




You have to take note of the individual directions of the plane. Since one is heading east, and the other is heading west, the planes are heading at opposite directions. So, it means that their distance between each other would be equal to 1,200 miles which accounts for the sum of their individual distances. The equation is as follows:
Total Distance = Distance of slower plane + Distance of faster plane
1,200 miles = st + (30+s)(t)
where
s is the speed of the slower plane and t is the time. Since both are not given, the final answer would just be in terms of s.
1,200 = t(s + 30 + s)
t = 1200/(30+2s)
t = 600/(15+s)