Answer:
a) 36 m
b) 64 m
Explanation:
Given:
v₀ = 0 m/2
v = 12 m/s
t = 6 s
Find: Δx
Δx = ½ (v + v₀) t
Δx = ½ (12 m/s + 0 m/s) (6 s)
Δx = 36 m
The track is 100 m, so the sprinter still has to run another 64 m.
Answer:
yes
Explanation:
He used the formula R = VI and obtained an
answer of 2
Answer:
Mass of the box = 0.9433 kg
Explanation:
Mass of racket-ball
= 0.00427 kg
Velocity of racket-ball before collision
= 22.3 m/s
Velocity of racket-ball after collision with box
= -11.5 m/s
[Since ball is bouncing back, so velocity is taken negative.]
Velocity of the box before collision
= 0 m/s
<em>[Since the box is stationary, so velocity is taken zero]</em>
Velocity of box moving forward after collision
= 1.53 m/s
To find the mas of the box
.
By law of conservation of momentum we have:
Momentum before collision = Momentum after collision
This can be written as:


We can plugin the given value to find 


Adding both sides by 0.4911


Dividing both sides by 1.53.


∴
kg
Mass of the box = 0.9433 kg (Answer)
the heat required to convert a solid into a liquid or vapor, or a liquid into a vapor, without change of temperature. hope this helps
Answer:
Explanation:
Consider another special case in which the inclined plane is vertical (θ=π/2). In this case, for what value of m1 would the acceleration of the two blocks be equal to zero
F - Force
T = Tension
m = mass
a = acceleration
g = gravitational force
Let the given Normal on block 2 = N
and 
and the tension in the given string is said to be 
When the acceleration 
for the said block 1.
It will definite be zero only when Force is zero , F=0.
Here by Force, F
I refer net force on block 1.
Now we know

It is known that if the said
,
then Tension
,
Now making 
So If we are to make Force equal to zero
