answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivanshal [37]
1 year ago
11

Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi

s process?
Physics
2 answers:
morpeh [17]1 year ago
4 0

Answer:

a) m = 993 g

b) E = 6.50 × 10¹⁴ J

Explanation:

atomic mass of hydrogen = 1.00794

4 hydrogen atom will make a helium atom = 4 × 1.00794 = 4.03176

we know atomic mass of helium = 4.002602

difference in the atomic mass of helium = 4.03176-4.002602 = 0.029158

fraction of mass lost = \dfrac{0.029158}{4.03176}= 0.00723

loss of mass for 1000 g = 1000 × 0.00723 = 7.23

a) mass of helium produced = 1000-7.23 = 993 g (approx.)

b) energy released in the process

E = m c²

E = 0.00723 × (3× 10⁸)²

E = 6.50 × 10¹⁴ J

Xelga [282]1 year ago
4 0

Answer:

(a) 992.87 g

(b) 6.419\times 10^{14} J

Solution:

As per the question:

Mass of Hydrogen converted to Helium, M = 1 kg = 1000 g

(a) To calculate mass of He produced:

We know that:

Atomic mass of hydrogen is 1.00784 u

Also,

4 Hydrogen atoms constitutes 1 Helium atom

Mass of Helium formed after conversion:

4\times 1.00784 = 4.03136 u

Also, we know that:

Atomic mass of Helium is 4.002602 u

The loss of mass during conversion is:

4.03136 - 4.002602 = 0.028758 u

Now,

Fraction of lost mass, M' = \frac{0.028758}{4.03136} = 0.007133 u

Now,

For the loss of mass of 1000g = 0.007133\times 1000 = 7.133 g

Mass of He produced in the process:

M_{He} = 1000 - 7.133 = 992.87 g

(b) To calculate the amount of energy released:

We use Eintein' relation of mass-enegy equivalence:

E = M'c^{2}

E = 0.007133\times (3\times 10^{8})^{2} = 6.419\times 10^{14} J

You might be interested in
To make the jump, Neo and Morpheus have pushed against their respective launch points with their legs applying a _____ to the la
ra1l [238]
Force, newtons 3rd law of motion stated for every action there is an equal and opposite reaction
7 0
2 years ago
A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.
Pie

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

3 0
1 year ago
A 25.0-meter length of platinum wire with a cross-sectional area of 3.50 × 10^−6 meter^2 has a resistance
Nookie1986 [14]
R= (rou * L) / area
where R is the wire resistance
rou: resistivity of the wire material
L : wire length
A : cross section area of wire
by sub.
0.757= (rou*25)/ 3.5*10^-6
25*rou = 2.6495*10^-6
rou= 1.0598*10^-7 ohm.m
4 0
1 year ago
A variable-length air column is placed just below a vibrating wire that is fixed at both ends. The length of the air column, ope
pogonyaev

Answer:

The speed of transverse waves in the wire is 234.26 m/s.

Explanation:

Given that,

Length of wire = 129 cm

Speed of sound in air = 340 m/s

First position of resonance = 31.2 cm

We need to calculate the wavelength

For pipe open at one end and closed at other, there is node at closed end and an anti node at open end for 1st resonance.

At 1st resonance,

L=\dfrac{\lambda}{4}

\lambda=4\times L

Put the value into the formula

\lambda=4\times31.2\times10^{-2}

\lambda=1.248\ m

We need to calculate the frequency of sound in pipe

Using formula of frequency

f=\dfrac{v}{\lambda}

Put the value into the formula

f=\dfrac{340}{1.248}

f=272.4\ Hz

We need to calculate the node distance

For the wire, there are 3 segments, so 4 nodes

Node-node distance ,

L=\dfrac{l}{3}

L = \dfrac{129}{3}

L=43\ cm

We need to calculate the wavelength of the wire

Using formula of length

L=\dfrac{\lambda}{2}

\lambda=L\times 2

Put the value into the formula

\lambda=43\times2

\lambda=86\ cm

We need to calculate the speed of the wave

Using formula of frequency

f=\dfrac{v}{\lambda}

v=f\times\lambda

Put the value into the formula

v=272.4\times86\times10^{-2}

v=234.26\ m/s

Hence, The speed of transverse waves in the wire is 234.26 m/s.

4 0
2 years ago
You throw a ball of mass 1 kg straight up. You observe that it takes 2.2 s to go up and down, returning to your hand. Assuming w
Elina [12.6K]

Answer:

10.791 m/s

5.93505 m

Explanation:

m = Mass of ball

v_f = Final velocity

v_i = Initial velocity

t_f = Final time

t_i = Initial time

g = Acceleration due to gravity = 9.81 m/s²

From the momentum principle we have

\Delta P=F\Delta t

Force

F=mg

So,

m(v_f-v_i)=mg(t_f-t_i)\\\Rightarrow v_i=v_f-g(t_f-t_i)\\\Rightarrow v_i=0-(-9.81)(1.1-0)\\\Rightarrow v_i=10.791\ m/s

The speed that the ball had just after it left the hand is 10.791 m/s

As the energy of the system is conserved

K_i=U\\\Rightarrow \dfrac{1}{2}mv_i^2=mgh\\\Rightarrow h=\dfrac{v_i^2}{2g}\\\Rightarrow h=\dfrac{10.791^2}{2\times 9.81}\\\Rightarrow h=5.93505\ m

The maximum height above your hand reached by the ball is 5.93505 m

5 0
2 years ago
Other questions:
  • A roller coaster travels 200 feet horizontally and then rises 135 feet at an angle of 30 degrees above the ground. What is the m
    7·1 answer
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • Julius competes in the hammer throw event. The hammer has a mass of 7.26 kg and is 1.215 m long. What is the centripetal force o
    15·2 answers
  • A vehicle traveling on wet or slick roads can begin to _________ as water forms a barrier between the road and the tires and tra
    5·2 answers
  • A responder can protect himself/herself from radiation by using shielding as a response action. What materials are best for prot
    6·1 answer
  • an object having a core temperature of 1700 is removed from a furnace and placed in an environment having a constant temperature
    8·1 answer
  • When the boy crashes his bumper car into the girl's bumper car, the momentum from his car is transferred to hers. What evidence
    6·2 answers
  • The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
    12·1 answer
  • The wavelength of light is 5000 angstrom. Express it in nm and m.
    13·1 answer
  • When 999mm is added to 100m ______ is the result​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!