answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
2 years ago
8

Dao makes a table to identify the variables used in the equations for centripetal acceleration.

Physics
2 answers:
LiRa [457]2 years ago
6 0

Answer : The variables used in the equations for centripetal acceleration are, radius and tangential speed.

Explanation :

Centripetal acceleration : It is defined as any object moving in a circular path will have some acceleration vector that pointed towards the center of the circle.

Formula used for centripetal acceleration is,

a_c=\frac{v^2}{r}

where,

a_c = centripetal acceleration

r = radius of path

v = velocity or speed of an object  or tangential speed

In the equation of centripetal acceleration, the radius and tangential speed are the variables.

Andru [333]2 years ago
3 0

Answer:

X: tangential speed

Y: radius

Explanation:

You might be interested in
A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
kykrilka [37]

Answer:

a) the impulse exerted by the rivet when the anvil has an infinite mass support is 0.932 lb.s

the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b) the impulse exerted by the rivet when the anvil has a support weight of 9 lb = 0.799 lb.s

the energy absorbed by the rivet under each blow when the anvil has a support weight of 9 lb is = 7.99 ft.lb

Explanation:

The first picture shows a schematic view of a free body momentum diagram of the hammer head and the anvil.

Using the principle of conservation of momentum to determine the final velocity of anvil and hammer after the impact; we have:

m_Hv_H + m_Av_A = m_Hv_2+m_Av_2

From the question given, we can deduce that the anvil is at rest;

∴ v_A = 0; then, we have:

m_Hv_H + 0 = (m_H+m_A) v_2

Making v_2 the subject of the formula; we have:

v_2 = \frac{m_Hv_H}{m_H + m_A}       ------- Equation  (1)

Also, from the second diagram; there is a representation of a free  body momentum  of the hammer head;

From the diagram;

F = impulsive force exerted on the  rivet

Δt = the change in time of application of the impulsive force

Using the principle of impulse of momentum to the hammer in the quest to determine the impulse exerted (i.e FΔt ) on the rivet; we have:

m_Hv_H - F \delta t = m_Hv_2

- F \delta t = - m_Hv_H + m_Hv_2

F \delta t = m_Hv_H - m_Hv_2

F \delta t = m_H(v_H - v_2)        ------- Equation   (2)

Using the function of the kinetic energy  of the hammer before impact T_1; we have:

T_1 = \frac{1}{2} m_Hv_H^2  -------- Equation (3)

We determine the mass of the hammer m_H  by using the formula from:

W_H = m_Hg

where;

W_H = weight of the hammer

m_H = mass of the hammer

g = acceleration due to gravity

Making m_H the subject of the formula; we have:

m_H = \frac{W_H}{g}

m_H = \frac{1.5 \ lb}{32.2 \ ft/s^2}

m_H = 0.04658 \ lb.s^2/ft

Now;

T_1 = \frac{1}{2} m_Hv_H^2

T_1 = \frac{1}{2}*(0.04658 \ lb.s^2 /ft) *(20 \ ft/s)^2

T_1 = \frac{18.632 }{2}

T_1 = 9.316 \ ft.lb

After the impact T_2 ; the final kinetic energy of the hammer and anvil can be written as:

T_2 = \frac{1}{2}(m_H +m_A)v^2_2

Recall from equation (1) ; where v_2 = (\frac{m_Hv_H}{m_H+m_A})  ; if we slot that into the above equation; we have:

T_2 = \frac{1}{2}(m_H +m_A)( \frac{m_Hv_H}{m_H+m_A})^2

T_2 = \frac{1}{2} \frac{m^2_H +v^2}{m_H+m_A}

T_2 = \frac{1}{2} ({m^2_H +v^2})(\frac{m_H}{m_H+m_A})

Also; from equation (3)

T_1 = \frac{1}{2} m_Hv_H^2; Therefore;

T_2 = T_1 (\frac{m_H}{m_H+m_A})    ----- Equation (4)

a)

Now; To calculate the impulse exerted by the rivet FΔt and the energy absorbed by the rivet under each blow  ΔT when the anvil has an infinite mass support; we have the following process

First , we need to find the mass of the anvil when we have an infinite mass support;

mass of the anvil m_A = \frac{W_A}{g}

where we replace;  W_A \ with \ \infty and g = 32.2 ft/s²

m_A =  \frac{\infty}{32.2 \ ft/s}

However ; from equation (1)

v_2 = \frac{m_H v_H}{m_H + m_A}

v_2 = \frac{0.04658*20}{0.04658+ \ \infty}

v_2 = 0

From equation (2)

F \delta t = m_H(v_H + v_2)      

F \delta t = (0.04658 lb .s^2 /ft )(20ft/s  - 0)

F \delta t = \ 0.932 \  lb.s

Therefore the impulse exerted by the rivet when the anvil has an infinite mass support is  0.932 lb.s

For the energy absorbed by the rivet ; we have:

T_2 = T_1 (\frac{m_H}{m_H+m_A} )

where;

T_1= 9.316 \ ft.lb

m_H = 0.04658 \ lb.s^2/ft

m_A = \infty

Then;

T_2 = (9.316 \ ft.lb) (\frac{0.04658\  lb.s^2/ft)}{0.04658  \ lb.s^2/ft+ \infty} )

T_2 = (9.316 \ ft.lb)* 0

T_2 = 0

Then the energy absorbed by the rivet under each blow ΔT when the anvil has an infinite mass support

ΔT = T_1 - T_2

ΔT = 9.316 ft.lb - 0

ΔT ≅  9.32 ft.lb

Therefore; we conclude that the energy absorbed by the rivet under each blow  when the anvil has an infinite mass support = 9.32 ft.lb

b)

Due to the broadness of this question, the text is more than 5000 characters, so i was unable to submit it after typing it . In the bid to curb that ; i create a document for the answer  for the part b of this question.

The attached file can be found below.

5 0
2 years ago
Which of the following best describes a capacitor?
galben [10]

Answer:

B

Explanation:

The capacitor is a component which has the ability to store energy in the form of an electrical charge  making a potential difference on those two metal plates

A capacitor consists of two or more parallel conductive (metal) plates. They are electrically seperated by an insulating material (ex: air, mica,ceramic etc.) which is called as Dielectric Layer

Due to this insulating layer, DC current can not flow through the capacitor.But it allows a voltage to be present across the plates in the form of an electrical charge.

4 0
2 years ago
Read 2 more answers
A mercury thermometer has a glass bulb of interior volume 0.100 cm3 at 10°c. the glass capillary 10) tube above the bulb has an
Nadya [2.5K]
Initial volume of mercury is
V = 0.1 cm³

The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.

Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is 
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³

The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
   = (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
   = 4.5 cm

Answer: 4.5 cm
7 0
2 years ago
Read 2 more answers
1. What is the momentum of a golf ball with a mass of 62 g moving at 73 m/s?
Anit [1.1K]

Answer:

<h3>The answer is 4.53 kgm/s</h3>

Explanation:

The momentum of an object can be found by using the formula

<h3>momentum = mass × velocity</h3>

From the question

mass = 62 g = 0.062 kg

velocity = 73 m/s

We have

momentum = 0.062 × 73 = 4.526

We have the final answer as

<h3>4.53 kgm/s</h3>

Hope this helps you

4 0
2 years ago
A rabbit is moving in the positive x-direction at 1.10 m/s when it spots a predator and accelerates to a velocity of 10.9 m/s al
anzhelika [568]

Answer:

aₓ = 0 ,       ay = -6.8125 m / s²

Explanation:

This is an exercise that we can solve with kinematics equations.

Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.

x axis

          vₓ = v₀ₓ = 1.10 m / s

          aₓ = 0

y axis

initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration

         v_{y}= v_{oy} -ay t

          ay = (v_{oy} -v_{y}) / t

          ay = (0 -10.9) / 1.6

          ay = -6.8125 m / s²

the sign indicates that the acceleration goes in the negative direction of the y axis

8 0
2 years ago
Other questions:
  • What differentiates baseline activities from health-enhancing activities?
    15·2 answers
  • Jack (mass 52.0 kg ) is sliding due east with speed 8.00 m/s on the surface of a frozen pond. he collides with jill (mass 49.0 k
    9·1 answer
  • James gently releases a ball at the top of a slope, but does not push the ball. The ball rolls down the slope. Which force cause
    5·2 answers
  • a student wants to push a box of books with the mass of 50 kg in 3 m horizontally towards the location of the shelves where the
    11·1 answer
  • A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?
    8·1 answer
  • A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
    9·1 answer
  • On a horizontal frictionless floor, a worker of weight 0.900 kN pushes horizontally with a force of 0.200 kN on a box weighing 1
    7·1 answer
  • "The drawing shows three layers of different materials, with air above and below the layers. The interfaces between the layers a
    7·1 answer
  • A wire has an electric field of 6.2 V/m and carries a current density of 2.4 x 108 A/m2. What is its resistivity
    15·1 answer
  • The most common type of mirage is an illusion that light from faraway objects seem to be reflected by a pool of water that is no
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!