answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
2 years ago
8

Dao makes a table to identify the variables used in the equations for centripetal acceleration.

Physics
2 answers:
LiRa [457]2 years ago
6 0

Answer : The variables used in the equations for centripetal acceleration are, radius and tangential speed.

Explanation :

Centripetal acceleration : It is defined as any object moving in a circular path will have some acceleration vector that pointed towards the center of the circle.

Formula used for centripetal acceleration is,

a_c=\frac{v^2}{r}

where,

a_c = centripetal acceleration

r = radius of path

v = velocity or speed of an object  or tangential speed

In the equation of centripetal acceleration, the radius and tangential speed are the variables.

Andru [333]2 years ago
3 0

Answer:

X: tangential speed

Y: radius

Explanation:

You might be interested in
Considering the activity series given for nonmetals, what is the result of the below reaction? Use the activity series provided.
Mariana [72]

Answer: The answer would be no reaction.

Explanation:

7 0
2 years ago
Read 2 more answers
A Wooden block has a mass of 0.200kg, a specific heat of 710 J (kg times degrees Celsius and is at a temperature of 20.0 degrees
olchik [2.2K]

Answer:

35°C

Explanation:

q = mCΔT

2130 J = (0.200 kg) (710 J/kg/°C) (T − 20.0°C)

T = 35°C

8 0
2 years ago
In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric
Viktor [21]

To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are

Comet mass M = 1.0*10^{13} kg

Radius r = 1.6km = 1600 m

Rock was dropped from a height 'h' from surface = 1m

The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

g = \frac{GM}{R^2}

Where G means gravitational universal constant and M the mass of the planet

g = \frac{(6.67408*10^{-11})(1*10^{13})}{1600^2}

g = 2.607*10^{-4} m/s^2

Now calculate the value of the time

h = \frac{1}{2} gt^2

t = \sqrt{\frac{2h}{g}}

t = \sqrt{\frac{2(1)}{2.607*10^{-4}}}

t = 87.58s

The time taken for the rock to reach the surface is t = 87.58s

8 0
1 year ago
160 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabol
anastassius [24]

Answer:

minimum power should be used to operate the air conditioner is 4000 W

Explanation:

given data

students  n = 160

power p = 125 W

COP = 5.0

to find out

what minimum power should be used

solution

we know the COP formula that is given below

COP = students × power  / minimum power

minimum power = n × p / COP

put all value

minimum power = n × p / COP

minimum power = 160 × 125 / 5

minimum power = 4000 W

minimum power should be used to operate the air conditioner is 4000 W

8 0
1 year ago
A segment of wire of total length 2.0 m is formed into a circular loop having 5.0 turns. If the wire carries a 1.2-A current, de
docker41 [41]

Answer:

Magnetic field at the center of the loop B=5.89\times 10^{-5}\ T.

Explanation:

It is given that total length of wire is 2 m and number of circular loop is 5 turns.

Therefore ,

5\times ( 2\pi r)=2 \ m .\\\\r=\dfrac{1}{5 \pi}=0.064\ m.

We know , magnetic field at the center of loop is given by :

B=N\dfrac{\mu_o i}{2r}

Putting all values in above equation we get :

B=5\times \dfrac{4\pi\times 10^{-7}\times 1.2}{2\times 0.064}\\\\B=5.89\times 10^{-5}\ T.

Hence , this is the required solution.

8 0
1 year ago
Other questions:
  • A 7-n vector at an angle of 45° to the horizontal has a vertical component that is about _______.
    6·1 answer
  • A migrating robin flies due north with a speed of 12 m/s relative to the air. The air moves due east with a speed of 6.8 m/s rel
    11·1 answer
  • A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° di
    14·1 answer
  • A ladder placed up against a wall is sliding down. The distance between the top of the ladder and the foot of the wall is decrea
    6·1 answer
  • An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
    10·1 answer
  • A 100 kg object hangs from two steel cables, both with radius 1.2 mm. The first cable is 2.5 m long and 2 mm shorter than the se
    7·1 answer
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of th
    13·1 answer
  • A water-skier with weight Fg = mg moves to the right with acceleration a. A horizontal tension force T is exerted on the skier b
    8·1 answer
  • A planet of mass M and radius R has no atmosphere. The escape velocity at its surface is ve. An object of mass m is at rest a di
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!