Answer:
The equilibrium temperature is
21.97°c
Explanation:
This problem bothers on the heat capacity of materials
Given data
specific heat capacities
copper is Cc =390 J/kg⋅C∘,
aluminun Ca = 900 J/kg⋅C∘,
water Cw = 4186 J/kg⋅C∘.
Mass of substances
Copper Mc = 235g
Aluminum Ma = 135g
Water Mw = 825g
Temperatures
Copper θc = 255°c
Water and aluminum calorimeter θ1= 16°c
Equilibrium temperature θf =?
Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water
McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)
Substituting our data into the expression we have
235*390(255-θf)=
(135*900+825*4186)(θf-16)
91650(255-θf)=(3574950)(θf-16)
23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6
Collecting like terms and rearranging
23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf
8.2*10^6=3.66*10^6θf
θf=80.5*10^6/3.6*10^6
θf =21.97°c
Answer:
part a : <em>The dry unit weight is 0.0616 </em>
<em />
part b : <em>The void ratio is 0.77</em>
part c : <em>Degree of Saturation is 0.43</em>
part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>
Explanation:
Part a
Dry Unit Weight
The dry unit weight is given as

Here
is the dry unit weight which is to be calculated- γ is the bulk unit weight given as

- w is the moisture content in percentage, given as 12%
Substituting values

<em>The dry unit weight is 0.0616 </em>
<em />
Part b
Void Ratio
The void ratio is given as

Here
- e is the void ratio which is to be calculated
is the dry unit weight which is calculated in part a
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
Substituting values

<em>The void ratio is 0.77</em>
Part c
Degree of Saturation
Degree of Saturation is given as

Here
- e is the void ratio which is calculated in part b
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction
Substituting values

<em>Degree of Saturation is 0.43</em>
Part d
Additional Water needed
For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

Here
is the zero air unit weight which is to be calculated
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction

Now as the volume is known, the the overall weight is given as

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.
Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km
The initial volume of the gas is

while its final volume is

so its variation of volume is

The pressure is constant, and it is

Therefore the work done by the gas is

where the negative sign means the work is done by the surrounding on the gas.
The heat energy given to the gas is

And the change in internal energy of the gas can be found by using the first law of thermodynamics:

where the positive sign means the internal energy of the gas has increased.