answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
1 year ago
10

The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘.

Physics
1 answer:
abruzzese [7]1 year ago
5 0

Answer:

The equilibrium temperature is

21.97°c

Explanation:

This problem bothers on the heat capacity of materials

Given data

specific heat capacities

copper is Cc =390 J/kg⋅C∘,

aluminun Ca = 900 J/kg⋅C∘,

water Cw = 4186 J/kg⋅C∘.

Mass of substances

Copper Mc = 235g

Aluminum Ma = 135g

Water Mw = 825g

Temperatures

Copper θc = 255°c

Water and aluminum calorimeter θ1= 16°c

Equilibrium temperature θf =?

Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water

McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)

Substituting our data into the expression we have

235*390(255-θf)=

(135*900+825*4186)(θf-16)

91650(255-θf)=(3574950)(θf-16)

23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6

Collecting like terms and rearranging

23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf

8.2*10^6=3.66*10^6θf

θf=80.5*10^6/3.6*10^6

θf =21.97°c

You might be interested in
Two identical horizontal sheets of glass have a thin film of air of thickness t between them. The glass has refractive index 1.4
Gre4nikov [31]

Answer:

the wavelength λ of the light when it is traveling in air = 560 nm

the smallest thickness t of the air film = 140 nm

Explanation:

From the question; the path difference is Δx = 2t  (since the condition of the phase difference in the maxima and minima gets interchanged)

Now for constructive interference;

Δx= (m+ \frac{1}{2} \lambda)

replacing ;

Δx = 2t   ; we have:

2t = (m+ \frac{1}{2} \lambda)

Given that thickness t = 700 nm

Then

2× 700 = (m+ \frac{1}{2} \lambda)     --- equation (1)

For thickness t = 980 nm that is next to constructive interference

2× 980 = (m+ \frac{1}{2} \lambda)     ----- equation (2)

Equating the difference of equation (2) and equation (1); we have:'

λ = (2 × 980) - ( 2× 700 )

λ = 1960 - 1400

λ = 560 nm

Thus;  the wavelength λ of the light when it is traveling in air = 560 nm

b)  

For the smallest thickness t_{min} ; \ \ \ m =0

∴ 2t_{min} =\frac{\lambda}{2}

t_{min} =\frac{\lambda}{4}

t_{min} =\frac{560}{4}

t_{min} =140 \ \  nm

Thus, the smallest thickness t of the air film = 140 nm

7 0
2 years ago
Read 2 more answers
The model of the atom has changed as scientists have gathered new evidence. Four models of the atom are shown below, but one imp
nexus9112 [7]

Answer: Dalton’s model

Explanation:

In the attached image we can see four atomic models labeled with four letters:

W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.

X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons.  This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.

Y represents Thomson's model, also called  the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.

So, the only missing model is <u>Dalton's model</u>, which was the first atomic model:  the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.

4 0
2 years ago
Read 2 more answers
Energy conservation with conservative forces: Two identical balls are thrown directly upward, ball A at speed v and ball B at sp
MatroZZZ [7]

Answer:

E) True.   Ball B will go four times as high as ball A because it had four times the initial kinetic energ

Explanation:

To answer the final statements, let's pose the solution of the exercise

Energy is conserved

Initial

          Em₀ = K

          Em₀ = ½ m v²

Final

         Emf = U = mg h

         Em₀ = emf

        ½ m v² = mgh

        h = v² / 2g

For ball A

         h_A = v² / 2g

For ball B

        h_B = (2v)² / 2g

        h_B = 4 (v² / 2g) = 4 h_A

Let's review the claims

A) False. The neck acceleration is zero, it has the value of the acceleration of gravity

B) False. Ball B goes higher

C) False  has 4 times the gravitational potential energy than ball A

D) False.  It goes 4 times higher

E) True.

6 0
1 year ago
Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
Masja [62]
Step 2: calculate A and B magnitudes
Step 3: calculate x, y components
Step 4: sum vector components
Step 5: calculate magnitude of R
Step 6: calculate direction of R
4 0
2 years ago
Read 2 more answers
The launching velocity of a missile is 20.0 m/s, and it is shot at 53º above the horizontal. Which of the velocity components (n
Gekata [30.6K]
Neglecting air resistance, the horizontal component remains constant. The angle doesn't matter.
5 0
2 years ago
Read 2 more answers
Other questions:
  • A 72 kg sled Is pulled forward from rest by a snowmobile and accelerates at 2 m/s squared forward for five seconds. The force of
    7·1 answer
  • A silver wire 2.6 mm in diameter transfers a charge of 420 Cin 80 min. Silver contains 5.8 x 10^{28} free electrons per cubic me
    11·1 answer
  • Which statements accurately describe conduction and convection? Check all that apply.
    13·2 answers
  • A steel projectile is shot horizontally at 20m/s from the top of a 40m tower. How long does it take to hit the ground? How far f
    15·1 answer
  • A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic
    12·1 answer
  • A jet engine gets its thrust by taking in air, heating and compressing it, and
    11·1 answer
  • A rear window defroster consists of a long, flat wire bonded to the inside surface of the window. When current passes through th
    5·2 answers
  • Derive an expression for the acceleration of the car. Express your answer in terms of D and vt Determine the time at which the s
    10·1 answer
  • You are pulling your little sister on her sled across an icy (frictionless) surface. When you exert a constant horizontal force
    6·1 answer
  • A rocket lifts a payload upward from the surface of Earth. The radius of Earth is R, and the weight of the payload on the surfac
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!