answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
2 years ago
8

Waves hitting at an angle and then bending around features of the coast is known as

Physics
1 answer:
Pavel [41]2 years ago
6 0
<span>Waves hitting at an angle and then bending around features of the coast is known as Wave refraction
When waves hitting a specific angle, some part of the waves will be closer to the shallow part of the water and some part will be closer to the deeper part of the water, which makes the wave became somehow bent around the shore.</span>
You might be interested in
A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
myrzilka [38]

Answer:

a. The plane speeds up but the cargo does not change speed.

Explanation:

Just to make it clear, the question is as follows from what I understand.

A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.  You can neglect air resistance.

Just after the cargo has fallen out:

a. The plane speeds up but the cargo does not change speed.

b. The cargo slows down but the plane does not change speed.

c. Neither the cargo nor the plane change speed.

d. The plane speeds up and the cargo slows down.

e. Both the cargo and the plane speed up.

And we are requested to choose the right answer under the given conditions. We know the glider has no motor, then it must be in free fall movement, then it is experiencing some force that pulls it to the from due to the gravity effect on it, and a force in general is calculated by

F=m*a, m:= mass of the object, a:= acceleration.

Here we are only considering the horizontal effect of the forces, then since the mass is reduced the acceleration must increase to compensate and maintain  the equilibrium of the forces, then the glider being lighter can travel faster due to the acceleration. On the other hand by the time the cargo left the glider there was no acceleration and the speed it had at the moment he left the plane continues, then the cargo does not change its speed, then horizontally speaking the answer would be a. The plane speeds up but the cargo does not change speed.

5 0
2 years ago
There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the differe
Usimov [2.4K]

An example that illustrates the difference is the circular motion

Explanation:

Let's start by reminding the definition of the two quantities:

- Speed is a scalar quantity that tells "how fast" an object is moving, regardless of its direction of motion.

Speed can be  calculate as:

speed = \frac{d}{t}

where:

d is the distance travelled

t is the time taken

- Velocity is instead a vector quantity, given by:

velocity = \frac{d}{t}

where;

d is the displacement of the object (displacement is a a vector connecting the initial position to the final position of motion)

t is the time taken

Since it is a vector, velocity has both a magnitude and a direction, therefore it also takes into account the direction of motion of the object.

For an object in motion in a straight line, speed and velocity are the same. However, this is not always the case.

In fact, an example of motion in which the two quantities are different is the circular motion. Consider for example the object making one complete revolution along the circle. Therefore, its average speed is the ratio between the length of the perimeter (the distance) divided by the time taken:

speed = \frac{2\pi r}{t}

where r is the radius of the circle.

However, the displacement of the object is zero (because the object returns to the starting point), and so the average velocity is also zero:

velocity = \frac{0}{t}=0

Learn more about speed and velocity:

brainly.com/question/8893949

brainly.com/question/5063905

brainly.com/question/5248528

#LearnwithBrainly

5 0
2 years ago
A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri
enot [183]

(a) 80 N/m

The spring constant can be found by using Hooke's law:

F=kx

where

F is the force on the spring

k is the spring constant

x is the displacement of the spring relative to the equilibrium position

At the beginning, we have

F = 16.0 N is the force applied

x = 0.200 m is the displacement from the equilibrium position

Solving the formula for k, we find

k=\frac{F}{m}=\frac{16.0 N}{0.200 m}=80 N/m

(b) 0.84 Hz

The frequency of oscillation of the system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 80 N/m is the spring constant

m = 2.90 kg is the mass attached to the spring

Substituting the numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{80 N/m}{2.90 kg}}=0.84 Hz

(c) 1.05 m/s

The maximum speed of a spring-mass system is given by

v=\omega A

where

\omega is the angular frequency

A is the amplitude of the motion

For this system, we have

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m (the amplitude corresponds to the maximum displacement, so it is equal to the initial displacement)

Substituting into the formula, we find the maximum speed:

v=(5.25 rad/s)(0.200 m)=1.05 m/s

(d) x = 0

The maximum speed in a simple harmonic motion occurs at the equilibrium position. In fact, the total mechanical energy of the system is equal to the sum of the elastic potential energy (U) and the kinetic energy (K):

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2

where

k is the spring constant

x is the displacement

m is the mass

v is the speed

The mechanical energy E is constant: this means that when U increases, K decreases, and viceversa. Therefore, the maximum kinetic energy (and so the maximum speed) will occur when the elastic potential energy is minimum (zero), and this occurs when x=0.

(e) 5.51 m/s^2

In a simple harmonic motion, the maximum acceleration is given by

a=\omega^2 A

Using the numbers we calculated in part c):

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m

we find immediately the maximum acceleration:

a=(5.25 rad/s)^2(0.200 m)=5.51 m/s^2

(f) At the position of maximum displacement: x=\pm 0.200 m

According to Newton's second law, the acceleration is directly proportional to the force on the mass:

a=\frac{F}{m}

this means that the acceleration will be maximum when the force is maximum.

However, the force is given by Hooke's law:

F=kx

so, the force is maximum when the displacement x is maximum: so, the maximum acceleration occurs at the position of maximum displacement.

(g) 1.60 J

The total mechanical energy of the system can be found by calculating the kinetic energy of the system at the equilibrium position, where x=0 and so the elastic potential energy U is zero. So we have

E=K=\frac{1}{2}mv_{max}^2

where

m = 2.90 kg is the mass

v_{max}=1.05 m/s is the maximum speed

Solving for E, we find

E=\frac{1}{2}(2.90 kg)(1.05 m/s)^2=1.60 J

(h) 0.99 m/s

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

so the elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(80 N/m)(0.0667 m)^2=0.18 J

and since the total energy E = 1.60 J is conserved, the kinetic energy is

K=E-U=1.60 J-0.18 J=1.42 J

And from the relationship between kinetic energy and speed, we can find the speed of the system:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.42 J)}{2.90 kg}}=0.99 m/s

(i) 1.84 m/s^2

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

So the restoring force exerted by the spring on the mass is

F=kx=(80 N/m)(0.0667 m)=5.34 N

And so, we can calculate the acceleration by using Newton's second law:

a=\frac{F}{m}=\frac{5.34 N}{2.90 kg}=1.84 m/s^2

8 0
1 year ago
The descriptions below explain two ways that water is used by plants on a sunny day. I. In a process called transpiration, some
grigory [225]
In photosynthesis, the water is being used to create food for the plant (Glucose). In transpiration the water is going from a liquid to a gas that's being released.
4 1
2 years ago
Read 2 more answers
What is the weight of a 1-kilogram brick resting on a table?
MakcuM [25]

Answer:

The weight if the block is 10Newtons

Explanation:

The weight of any object is quantity of matter the object contains and it is always acting downwards on such body. This shows that the object is under the influence of gravity.

The weight of an object is calculated as mass of the object × its acceleration due to gravity

W = mg

Give the mass of the brick to be 1kg

g is the acceleration due to gravity = 10m/s²

Weight of the object = 1 × 10

= 10kgm/s² or 10Newtons

5 0
1 year ago
Other questions:
  • What is the amount of displacement of a runner who runs exactly 2 laps around a 400 meter track?
    7·2 answers
  • When a craton is exposed at earth's surface, it is called a ________. when a craton is exposed at earth's surface, it is called
    14·1 answer
  • You place your hands over a steaming bowl of soup to warm them. Which type of heat transfer are you experiencing?
    10·2 answers
  • A uniform magnetic field of 0.50 T is directed along the positive x axis. A proton moving with a speed of 60 km s enters this fi
    11·1 answer
  • In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being
    11·1 answer
  • A particular cylindrical bucket has a height of 36.0 cm, and the radius of its circular cross-section is 15 cm. The bucket is em
    7·1 answer
  • A piston-cylinder chamber contains 0.1 m3 of 10 kg R-134a in a saturated liquid-vapor mixture state at 10 °C. It is heated at co
    12·1 answer
  • 2. On January 21 in 1918, Granville, North Dakota, had a surprising change in temperature. Within 12 hours, the temperature chan
    10·1 answer
  • Anita is comparing the accepted value for a physical property to the value she measured in the laboratory. Which characteristic
    13·2 answers
  • Use Newton's laws of motion to explain why it is important that baseballs and softballs each have a small acceptable range of ma
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!