Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Answer:
The magnets need to be placed with red closest to blue.
Opposite poles attract.
The magnets will be attracted to each other with enough force to stick together.
Explanation:
Fnet=(115+106)-186= 34 N
mass=Force/g= 186N/9.8m/s^2 = 18.98 kg
a=fnet/mass => 34N/18.98kg = 1.79 m/s^2
so A= 1.8m/s^2
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that it is having constant torque so here the time taken by it to accelerate is given as



Part b)
angular displacement is given as



Part c)
As we know that the angular deceleration produced by the brakes is given as

now we have



As we know that

so we have

Answer:
7500 m
Explanation:
The radar emits an electromagnetic wave that travels towards the object and then it is reflected back to the radar.
We can call L the distance between the radar and the object; this means that the electromagnetic wave travels twice this distance, so
d = 2L
In a time of

Electromagnetic waves travel in a vacuum at the speed of light, which is equal to

Since the electromagnetic wave travels with constant speed, we can use the equation for uniform motion ,so:
(1)
where


, where L is the distance between the radar and the object
Re-arranging eq(1) and substituting, we find L:
