answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
2 years ago
12

A car drives at a constant speed around a banked circular track with a diameter of 136 m . The motion of the car can be describe

d in a coordinate system with its origin at the center of the circle. At a particular instant the car's acceleration in the horizontal plane is given by a⃗ =(−15.4i^−25.4j^)m/s2.
What is the car's speed?
Where (x and y) is the car at this instant?
Physics
2 answers:
igor_vitrenko [27]2 years ago
7 0

Answer:

v = 44.9 m/s

x = 68 cos58.77 = 35.25 m

y = 68 sin58.77 = 58.14 m

Explanation:

As we know that car drives at constant speed along circular path then we will have its position vector given as

\vec r = R cos\omega t \hat i + R sin\omega t \hat j

now if we differentiate is with respect to time then it will give as instantaneous velocity

so we have

v = -R\omega sin\omega t \hat i + R\omega cos\omega t\hat j

now again its differentiation with respect to time will give us acceleration

a = - R \omega^2 cos\omega t \hat i - R\omega^2 sin\omega t\hat j

now if we compare it with given value of acceleration

a = -15.4\hat i - 25.4 \hat j

R\omega^2cos\omega t = 15.4

R\omega^2sin\omega t = 25.4

divide both equations then we will have

[tec]tan\omega t = 1.65[/tex]

\omega t = 58.77 degree

Now we have

R = 68 m/s

so we can solve it for

R\omega^2cos58.77 = 15.4

\omega = 0.66 rad/s

so speed of the car is given as

v = R\omega

v = 0.66\times 68

v = 44.9 m/s

now we have coordinates of car given as

x = R cos\omega t

x = 68 cos58.77 = 35.25 m

y = R sin\omega t

y = 68 sin58.77 = 58.14 m

galina1969 [7]2 years ago
5 0

Answer:

speed = 44.9m/s

x = 35.5 m,  y = 58.0m

Explanation:

A car on a circular track with constant angular velocity ω can be described by the equation of position r:

\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}

The velocity v is given by:

\overrightarrow {v(t)} = \overrightarrow{\frac{dr}{dt}}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}

The acceleration a:

\overrightarrow {a(t)} = \overrightarrow{\frac{dv}{dt}}= -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}

From the given values we get two equations:

-\omega^2 Rsin(\omega t)=-15.4\\-\omega^2 Rcos(\omega t)=-25.4

We also know:

\overrightarrow {a(t)} = -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}=-\omega^2\overrightarrow{r(t)}

The magnitude of the acceleration a is:

a=\sqrt{(-15.4)^2+(-25.4)^2}=29.7

The magnitude of position r is:

r=R=68m

Plugging in to the equation for a(t):

\overrightarrow {a(t)} =-\omega^2\overrightarrow{r(t)}

and solving for ω:

|\omega|=0.66

Now solve for time t:

\frac{sin(0.66t)}{cos(0.66t)}=tan(0.66t)=\frac{15.4}{25.4}\\t=0.83

Using the calculated values to compute v(t):

\overrightarrow {v(t)}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}\\\overrightarrow {v(t)}=44.88cos(0.55)\hai{i}-44.88sin(0.55)\hat{j}\\\overrightarrow {v(t)}=38.3\hat{i}-23.5\hat{j}

The speed of the car is:

\sqrt{38.3^2 + (-23.5)^2} = 44.9

The position r:

\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}\\\overrightarrow {r(t)} = 68sin(0.55)\hat{i} + 68cos(0.55)\hat{j}\\\overrightarrow {r(t)} = 35.5{i} + 58.0\hat{j}

You might be interested in
Olivia wants to find out whether a substance will fluoresce. She says she should put it in a microwave oven. Do you agree with h
Luda [366]

Disagree

Explanation:

Fluoresce objects will glow when put under Ultraviolet light as the molecules are excited by the ultraviolet radiation.

Microwaves give micro-waves that are present in another spectrum of wave length and will not be able to fluoresce the molecules

3 0
2 years ago
Read 2 more answers
In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
noname [10]

Answer:

14.7 m/s

Explanation:

a = acceleration experienced by driver's head = 50 g = 50 x 9.8 m/s² = 490 m/s²

v₀ = initial speed of the driver = 0 m/s

v = final speed of the driver after 30 ms

t = time interval for which the acceleration is experienced = 30 ms = 0.030 s

Using the equation

v = v₀ + a t

Inserting the values

v = 0 + (490) (0.030)

v = 14.7 m/s

6 0
2 years ago
A small cylinder rests on a circular turntable that is rotating clockwise at a constant speed. Which set of vectors gives the di
I am Lyosha [343]

The question is missing the diagram. Also, the choices must have pictorial representation. So, I have attached the missing diagram and the pictorial representation of the vectors.

Answer:

The correct representation is attached below. Force and acceleration will be towards the center of rotation while the velocity will be along the tangent to the circular motion. <u>Option (D).</u>

Explanation:

From the figure, we can conclude the following points:

1. The cylinder is under a uniform circular motion as the circular table is moving at constant speed.

2. For a circular motion, velocity acts along the tangent to the circular path.

3. For a circular motion, centripetal force acts on the body that causes it move around a circular path.

4 The direction of the centripetal force is radially inward towards the center of rotation.

5. The centripetal force causes a centripetal acceleration acting on the body.

6. From Newton's second law, the net acceleration of a body is in the same direction as that of the net force acting on it. So, centripetal acceleration also acts in the radially inward direction.

Therefore, from the above conclusions, it is clear that velocity will act in the horizontal direction at the given instance of time and force and acceleration will act vertically down for the given instance.

This is shown in the picture below. The option (D).

4 0
2 years ago
The refractive index of glass is 1.65 find the speed of light in glass.
zzz [600]

The refractive index of flint glass is 1.65.what is the speed of light in the glass? speed of light in the air is 3 x 10 power 8 m/s

3 0
2 years ago
What does the diagram show about phases and the phase of the substance as it is heated? Check all that apply.
Romashka [77]

Answer:

2 and 4

Explanation:

right on edge

7 0
2 years ago
Read 2 more answers
Other questions:
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • 2. Particle motion in a longitudinal wave is ______.
    14·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    10·1 answer
  • A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t
    13·1 answer
  • A charge Q experiences no net force at a particular point in space. Which of the following situations described below must ALWAY
    11·1 answer
  • A solid metal sphere of diameter D is spinning in a gravity-free region of space with an angular velocity of ω. The sphere is sl
    7·1 answer
  • Electrons with energy of 25 eV have a wavelength of ~0.25 nm. If we send these electrons through the same two slits (d = 0.16 mm
    6·1 answer
  • A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend.
    7·1 answer
  • An amusement park ride consists of airplane-shaped cars attached to steel rods. Each rod has a length of 15m and a cross-section
    6·1 answer
  • Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away. Arrow b
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!