Answer:
Mendeleev predicted the atomic mass of each element along with compounds they each should form.
Explanation:
Based on other elements in the same group he predicted the existence of eka-aluminum and eka-silicon, later to be named gallium (Ga) and germanium (Ge).
<span>(a) 0.0676 l
(b) 67.6 cc
So we've been told that 5.00 L of blood flows through the heart every minute and that the heart beats 74.0 times per minute. So that means that for every beat of the heart, 5.00 L / 74.0 = 0.067567568 L of blood flows through the heart. Rounding to 3 significant figures gives 0.0676 l. Converting from liters to cubic centimeters simply require a multiplication by 1000, so we have 67.6 cc of blood pumped per beat.</span>
Factors affecting friction
The intensity of friction depends on following factors: i) The area involved in friction. ii) The pressure applied on the surfaces. Force = Pressure ´ Area Frictional force will increase, if the area of contact will increase or if pressure applied on the surface increased.
Methods to reduce friction
i) Polish the contact surface. ii) Put oil or grease so that it fills in the small gaps of the flat parts. iii) Use ball bearings to reduce area of contact between rotating parts.
Lubrication
Following methods can be used to reduce friction: Oil is either thin or viscous. It depends upon SAE No. of oil. (SAE means Society of Automotive Engineers). If we use very viscous oil, it does not reach all the parts. Very thin oil will flows away easily and gets wasted. Grease is used in such cases. It is generally used around ball-bearing. Normal grease or oil is never used where there is high pressure, high temperature and high speed. Special lubricants are used in such cases. In cold season the oil becomes thick and in hot season it becomes thin. Therefore selection of lubrication also depends on the season. It is always advisable to refer operating manual of the equipment before selecting the lubricant.
Answer:
n = 2.06 moles
Explanation:
The absolute pressure at depth of 27 inches can be calculated by:
Pressure = Pressure read + Zero Gauge pressure
Zero Gauge pressure = 14.7 psi
Pressure read = 480 psi
Total pressure = 480 psi + 14.7 psi = 494.7 psi
P (psi) = 1/14.696 P(atm)
So, Pressure = 33.66 atm
Temperature = 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
T = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
33.66 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 2.06 moles
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s