answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klemol [59]
2 years ago
5

A closed and elevated vertical cylindrical tank with diameter 2.00 m contains water to a depth of 0.800 m. A worker accidentally

pokes a circular hole with diameter 0.0200 m in the bottom of the tank. As the water drains from the tank, compressed air above the water in the tank maintains a gauge pressure of 5.00×103Pa at the surface of the water. Ignore any effects of viscosity. (a) Just after the hole is made, what is the speed of the water as it emerges from the hole? What is the ratio of this speed to the efflux speed if the top of the tank is open to the air? (b) How much time does it take for all the water to drain from the tank? What is the ratio of this time to the time it takes for the tank to drain if the top of the tank is open to the air?
Physics
1 answer:
vazorg [7]2 years ago
6 0

Answer:

a. v1 = 5.06 m/s,  v2 = 3.96 m/s ,  R = 1.27

b. t = 1 hr, 11 min, 26 sec  

Explanation:

Using the Bernoulli's laws to use the conserved energy

a. Solve the speed and the radio of this speed of the tank is open to the air

p₀ + ρgh₀ + ½ρv₀² = p₁ + ρgh₁ + ½ρv₁²

5000Pa + 1000kg/m³ * 9.8m/s² * 0.800m + 0 = 0 + 0 + ½ * 1000kg/m³ * v²

v² = 25.68  m²/s²

v1 = 5.06 m/s

Because it is open the tank so P=0 pa so:

0 Pa + 1000kg/m³ * 9.8m/s² * 0.800m + 0 = 0 + 0 + ½ * 1000kg/m³ * v²

v² = 15.68  m²/s²

v2 = 3.96 m/s

The ratio on the air is solve using both velocities so:

R = v1/v2 = 5.06 m/s / 3.96 m/s

R = 1.27

b. Now to find the time it takes for the tank to drain if the tank is open to the air

dh/dt = -u

dh/dt = -v * A/A'

dh/dt = v*(.02m)²/(2.0m)² = -v / 10000

and we can further substitute for v:

dh/dt = -(1/1e4)*√[(p+9800h)/500]

Solve replacing

-(1000/49)*√(49000h) = t + C

-(1000/49)*√(49000*0.8) = 0 + C

C = - 4040.6

Then when h = 0,

t = 4286 s

t = 1 hr, 11 min, 26 sec  

You might be interested in
This outlaw is executed by hanging "in the spring of '25" by
irina [24]
The outlaw that was <span>executed by hanging "in the spring of '25" is identified as the HIGHWAYMAN.

This is one of the characters in the song, "American Remains", sang by The Highwaymen. The group consisted of </span><span>Johnny Cash, Waylon Jennings, Willie Nelson and Kris Kristofferson. Other characters in the song were a sailor, a dam builder, and a pilot of a starship.
</span>
This is the first stanza of the song:

"I was a highwayman. Along the coach roads I did ride 
<span>With sword and pistol by my side </span>
<span>Many a young maid lost her baubles to my trade </span>
<span>Many a soldier shed his lifeblood on my blade </span>
<span>The b*stards hung me in the spring of twenty-five </span>
<span>But I am still alive."</span>
 
8 0
2 years ago
Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
lyudmila [28]

Answer:

B.It is a satellite that collects data about rain and snow

C.Its orbit covers 90 percent of Earth’s surface

F.The sensors measure microwaves

5 0
2 years ago
A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger pulley with an angular velocity
Likurg_2 [28]

Answer:

a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2  = 239.6 N,

b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm

Explanation:

Given that:

γ= 9.5 kN/m³ = 9500N/m3

b = 6 inches = 0.1524 m

t = 0.0013 mm

d = 2 inches  = 0.0508 m

n = 1750 rpm

H_{nom}=2hp=1491.4W

L = 9 ft = 2.7432 m

Ks = 1.25

g = 9.81 m/s²

a)

w=\gamma b t = 9500* 0.1524*0.0013=1.88N/m

V=\frac{\pi d n}{60} =\pi *0.0508*1750/60=4.65 m/s

F_c=\frac{wV^2}{g}=1.88*4.65^2/9.81=4.15N

(F_1)_a=bF_aC_pC_v=0.1524*6000*0.7*1=640N

T=\frac{H_{nom}n_dK_s}{2\pi n}= \frac{1491*1.25*1}{2*\pi*1750/60}=10.17Nm

F_2=(F_1)_a-\frac{2T}{D}= 640-\frac{2*10.17}{0.0508} =239.6N

F_i=\frac{(F_1)_a+F_2}{2} -F_c=435.65N

b)

H_a=1491*1.25=1863.75W

n_f_s=\frac{H_a}{H_{nom}K_S }=1

dip = \frac{L^2w}{8F_i} =\frac{2.7432*1.88}{435.65}=11.8mm

7 0
1 year ago
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
gogolik [260]
False is the correct answer
6 0
2 years ago
Other questions:
  • Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
    9·2 answers
  • What is the weight of an object (mass = 60 kilograms) on Mars, where the acceleration due to gravity is 3.75 meters/second2?. Se
    15·1 answer
  • A 480-kilogram horse runs across a field at a rate of 40 km/hr. What is the magnitude of the horse's momentum?
    12·2 answers
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • Arwan finds a piece of quartz while hiking in the mountains. When he returns to school, he takes it to his science teacher. She
    7·2 answers
  • A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
    6·2 answers
  • One reason you should avoid taking risks as a driver is:
    12·1 answer
  • In 2014, about how far in meters would you have to travel on the surface of the Earth from the North Magnetic Pole to the Geogra
    5·1 answer
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!