answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
1 year ago
9

A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is

the ballâs maximum height? (hint: at the top of its flight, the ballâs vertical velocity component will be zero.)
Physics
1 answer:
kvasek [131]1 year ago
7 0

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

You might be interested in
Nitrogen (n2) gas within a piston–cylinder assembly undergoes a compression from p1 = 20 bar, v1 = 0.5 m3 to a state where v2 =
Bingel [31]

Part a)

As we know that

P_1V_1^{1.35} = P_2V_2^{1.35}

here we know that

P1 = 20 bar

V1 = 0.5 m^3

V2 = 2.75 m^3

from above equation

20* 0.5^{1.35} = P * (2.75)^{1.35}

P = 2 bar

so final state pressure will be 2 bar

Part b)

now in order to find the work done

W = \int PdV

W = \int \frac{c}{V^{1.35}}dV

W = c\frac{V^{-0.35}}{-0.35}

W = \frac{P_1V_1 - P_2V_2}{0.35}

W = \frac{20* 0.5 - 2 * 2.75}{0.35}* 10^5 = 12.86 * 10^5 J

3 0
2 years ago
Read 2 more answers
If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
Nataliya [291]
The answer would be negative charge because +, and - dont like each other so they retract from each other.
3 0
2 years ago
Read 2 more answers
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
slavikrds [6]

Answer:

The acceleration of the cheetahs is 10.1 m/s²

Explanation:

Hi there!

The equation of velocity of an object moving along a straight line with constant acceleration is the following:

v = v0 + a · t

Where:

v = velocity of the object at time t.

v0 = initial velocity.

a = acceleration.

t = time

We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.

Let's convert mi/h into m/s:

50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s

Then, using the equation:

v = v0 + a · t

22.4 m/s = 0 m/s + a · 2.22 s

Solving for a:

22.4 m/s / 2.22 s = a

a = 10.1 m/s²

The acceleration of the cheetahs is 10.1 m/s²

5 0
2 years ago
80 foot-pounds of work is needed to move the sofa in Tyler's apartment. Which of the following statements is true?
erastova [34]
D is the correct answer
hop it helped.
3 0
2 years ago
Other questions:
  • A cannon, elevated at 40∘ is fired at a wall 300 m away on level ground, as shown in the figure below. The initial speed of the
    6·2 answers
  • In which of the following examples does the object have both kinetic and potential energy? Select all that apply.
    11·2 answers
  • When a warm air mass catches up with a cold air mass, forming a warm front, the warm air slides over the top of the cold air, be
    12·1 answer
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    14·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m&gt;s relative to an orbiting space shuttle
    10·1 answer
  • An archer shot a 0.06 kg arrow at a target. The arrow accelerated at 5,000 m/s2 to reach a speed of 50.0 m/s as it left the bow.
    10·1 answer
  • What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?
    12·1 answer
  • A hydraulic lift is designed to lift cars up to 2000 kg in mass.If the lift under the car is 1.0 m by 1.2m and the area of the i
    14·1 answer
  • Suppose we were to attempt to use a similar machine to measure the charge-to-mass ratio of protons, instead. Suppose, for simpli
    9·1 answer
  • Which option is part of designing a set of experimental procedures?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!