answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
2 years ago
11

In which of the following examples does the object have both kinetic and potential energy? Select all that apply.

Physics
2 answers:
notsponge [240]2 years ago
6 0
I believe the answer is H for when you bounce it, it has stress when it hits the floor and then goes up giving it kinetic
Alex2 years ago
4 0
H,g,f,d, and b are the answers


You might be interested in
After an arrow is shot, is the force unbalanced or balanced? BRAINLY.
Reil [10]

Answer:

The force is unbalanced

Explanation:

After an arrow is shot, the force acting on the arrow is unbalanced. The resulting net force gives the arrow an initial acceleration which wanes with time and the body is brought to rest.

The net force acting on an arrow is not zero and this indicates that the forces acting on the arrow is unbalanced.

If the force is balanced, the arrow is expect to continue in uniform motion but that is not the case as air resistance has massive impact on this body.

7 0
2 years ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
Seema knows the mass of basketball. What other information is needed to find the balls potential energy
Lelu [443]

Answer: The height (position) of the ball and the acceleration due gravity

Explanation:

In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field.  In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.  

In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy U will be:  

U=mgh  

Where:

m is the mass of the ball

g=9.8 m/s^{2} is the acceleration due gravity (assuming the ball is on the Earth surface)

h is the height (position) of the ball respect to a given point

Note the value of the gravitational potential energy is directly proportional to the height.

8 0
2 years ago
Read 2 more answers
If a train is 100 kilometers away, how much sooner would you hear the train coming by listening to the rails (iron) as opposed t
Whitepunk [10]
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)

Distance traveled is
d = 100 km = 10⁵ m

Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s

Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s

The difference in time is
302.12 - 19.49 = 282.63 s

Answer:  283 s (nearest second)



6 0
2 years ago
Sara and Saba are identical twins who are the same in every way, including their weights. One day, Sara and Saba decided to go f
Sphinxa [80]

As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.

3 0
2 years ago
Other questions:
  • Which of the following ways is usable energy lost?
    14·2 answers
  • what did classical physics predict about electron flow as a result of light shining on a metal surface?
    8·1 answer
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • What geologic features might form at the surface of plate A?
    8·1 answer
  • two coconuts fall freely from rest at the same time, one twice as high as the other. If The coconut from the shorter tree takes
    8·1 answer
  • A man runs at a velocity of 4.5 m/s for 15.0 min. When going up an increasingly steep hill, he slows down at a constant rate of
    11·1 answer
  • Glycerin at 20 8 C fills the space between a hollow sleeve of diameter 12 cm and a fixed coaxial solid rod of diameter 11.8 cm.
    8·1 answer
  • Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The mass o
    15·1 answer
  • An infinitely long cylinder of radius R has linear charge density λ. The potential on the surface of the cylinder is V0, and the
    9·1 answer
  • According to the nebular theory of solar system formation, what key difference in their early formation explains why the jovian
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!