Answer: a)
Explanation:
The buoyant force, as stated by Archimedes’ principle, is equal to the weight of the liquid that occupies the same volumen as the submerged object, as follows:
Fb = δ.V.g
If this force is larger than the weight of the object (that means that the fluid is denser than the solid), the object floats, which is the case for silver and mercury.
Instead, silver density is larger than water density, which explains why the pure silver ingot sinks.
Finally, as mercury is denser than water, we conclude that for a same object, the buoyant force in mercury is larger than in water (exactly 13.6 times greater).
Answer:
The mass of the cube is 420.8 kg.
Explanation:
Given that,
Length of edge = 38.9 cm
Density 
We need to calculate the volume of cube
Using formula of volume


We need to calculate the mass of the cube
Using formula of density




Hence, The mass of the cube is 420.8 kg.
Answer:
a. 30 N / m
b. 9.0 N
Explanation:
Given that
Unstretched length of the spring,
= 20.0cm = 0.2m
a) When the mass of 4.5N is hanging from the second spring, then extended length Is
= 35.0cm = 0.35m
So, the change in spring length when mass hangs is

= (0.35 - 0.20) m
= 0.15m
As spring are identical
Let us assume that the spring constant be "k", so at equilibrium
Restoring Force on spring = Block weightage
kx = W = 4.50

= 30 N / m
b) Now for the third spring, stretched the length of spring is
= 50cm = 0.5m
So, the change in spring length is

= (0.5-0.20)m
= 0.30m
At equilibrium,
Restoring Force on spring = Block weightage
Now using all mentioned and computed values in above,

= 30(0.3)
= 9.0 N
br[ o o o o o o o o o o o o o o o o o o o o opppppo o o o. oo o o o
Answer:
Explanation:
For the problem, we should have same reynolds number
ρvd/mu = constant
1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600
d = 25.66 cm