His answer was incorrect because according to ohm's law the formula used should have been R=V/I instead of multiplying and the answer should be 8ohms
Answer:
the answer the correct one is the d
Explanation:
In the gate rotation experiment several things are measured.
- the distance from the hinges to the applied force, which must be measured with a tape measure
- The value of the force that is devised with a dynamometer
- the rotated angle that is measured with a protractor
- the time it takes to turn an angle, which is measured with a stopwatch
When examining the answer the correct one is the d
Answer:
the average velocity of car A between t1 and t2greater is greater than the average velocity of B berween t1 and t2
Explanation:
Velocity is displacement over time,
Displacement is the distance covered relative to the initial starting position
For A:
at time ti, A moved from Xo to 2Xo, displacement is 2Xo.
at time t2 a moves with speed 3V, hence, his new position will be 3Xo from 2Xo which will be at 5Xo. A's displacement is 5Xo from starting point.
For B:
at time ti, B moved from Xo to 2Xo, displacement is 2Xo.
at time t2 a moves with speed V in the opposite position so he'll be back to his starting point, hence, his new position will be at Xo. A's displacement is 0 from his starting point.
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is

