Answer:
c) quadruple in magnitude
Explanation:
The power dissipated in the circuit is given by:

where
I is the current in the circuit
R is the total resistance of the circuit
In this problem:
- The current is doubled: I' = 2 I
- The resistance is kept constant: R' = R
So, the power dissipated is

so, the power dissipated increase by a factor 4 (quadruples).
Answer:
The charge to mass ratio is 
Explanation:

We need to find how much charge is contained in the electron per unit of mass, to do this we divide the charge in an electron and the mass of an electron:

Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
br[ o o o o o o o o o o o o o o o o o o o o opppppo o o o. oo o o o
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.