Answer and Explanation:
A. We have temperature t = 32
Speed of sound, s = 1087.5
As t increases by 1⁰f speed increases by 1.2
So that
S = 1088.6
T= 33⁰f
We have 2 equations
1087.5 = k(32) + c
1088.6 = k(33) + c
Subtracting both equations
(33-32)k = 1088.6-1087.5
K = 1.1
b.). S = kT + c
1087.5 = 32(1.1) + c
Such that
C = 1052.3
Therefore
S = 1.1(t) + 1052.3
C.). S = 1.1t + 1052.3
We make t subject of the formula
T = s/1.1 - 1052.3/1.1
T = 0.90(s) - 956.3
D. This means that We have temperature to rise by 0.90 whenever speed is increased
Answer: SG = 2.67
Specific gravity of the sand is 2.67
Explanation:
Specific gravity = density of material/density of water
Given;
Mass of sand m = 100g
Volume of sand = volume of water displaced
Vs = 537.5cm^3 - 500 cm^3
Vs = 37.5cm^3
Density of sand = m/Vs = 100g/37.5 cm^3
Ds = 2.67g/cm^3
Density of water Dw = 1.00 g/cm^3
Therefore, the specific gravity of sand is
SG = Ds/Dw
SG = (2.67g/cm^3)/(1.00g/cm^3)
SG = 2.67
Specific gravity of the sand is 2.67
The magnetic force exerted by a field E to a charge q is given by F=Eq. In this case, F=4.30*10^4*(6.80mu C). 1mu C=10^-6C, so F=4.30*6.80=10^-2=0.29N. The direction is in the x direction, the direction that the field is applied because the charge is positive.
Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb