answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
2 years ago
8

In a certain region of space, a uniform electric field has a magnitude of 4.30 x 104 n/c and points in the positive x direction.

find the magnitude and direction of the force this field exerts on a charge of +6.80 μc.
Physics
1 answer:
denis23 [38]2 years ago
5 0
The magnetic force exerted by a field E to a charge q is given by F=Eq. In this case, F=4.30*10^4*(6.80mu C). 1mu C=10^-6C, so F=4.30*6.80=10^-2=0.29N. The direction is in the x direction, the direction that the field is applied because the charge is positive.
You might be interested in
A child is playing with a spring toy, first stretching and then compressing it.
Reika [66]
Sorry, I’m only in 6th Grade, I don’t know the answer to this question.
5 0
1 year ago
Find the time t2 that it would take the charge of the capacitor to reach 99.99% of its maximum value given that r=12.0ω and c=50
defon

Answer:

Explanation:

Given that, .

R = 12 ohms

C = 500μf.

Time t =? When the charge reaches 99.99% of maximum

The charge on a RC circuit is given as

A discharging circuit

Q = Qo•exp(-t/RC)

Where RC is the time constant

τ = RC = 12 × 500 ×10^-6

τ = 0.006 sec

The maximum charge is Qo,

Therefore Q = 99.99% of Qo

Then, Q = 99.99/100 × Qo

Q = 0.9999Qo

So, substituting this into the equation above

Q = Qo•exp(-t/RC)

0.9999Qo = Qo•exp(-t / 0.006)

Divide both side by Qo

0.9999 = exp(-t / 0.006)

Take In of both sodes

In(0.9999) = In(exp(-t / 0.006))

-1 × 10^-4 = -t / 0.006

t = -1 × 10^-4 × - 0.006

t = 6 × 10^-7 second

So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge

8 0
1 year ago
A slingshot can project a pebble at a speed as high as 38.0 m/s. (a) If air resistance can be ignored, how high (in m) would a p
kipiarov [429]

Answer:

73.67 m

Explanation:

If projected straight up, we can work in 1 dimension, and we can use the following kinematic equations:

y(t) = y_0 + V_0 * t + \frac{1}{2} a t^2

V(t) = V_0 + a * t,

Where y_0 its our initial height, V_0  our initial speed, a the acceleration and t the time that has passed.

For our problem, the initial height its 0 meters, our initial speed its 38.0 m/s, the acceleration its the gravitational one ( g = 9.8 m/s^2), and the time its uknown.

We can plug this values in our equations, to obtain:

y(t) =  38 \frac{m}{s} * t - \frac{1}{2} g t^2

V(t) = 38 \frac{m}{s} - g * t

note that the acceleration point downwards, hence the minus sign.

Now, in the highest point, velocity must be zero, so, we can grab our second equation, and write:

0 m = 38 \frac{m}{s} - g * t

and obtain:

t = 38 \frac{m}{s} / g

t = 38 \frac{m}{s} / 9.8 \frac{m}{s^2}

t = 3.9 s

Plugin this time on our first equation we find:

y = 38 \frac{m}{s} * 3.9 s - \frac{1}{2} 9.8 \frac{m}{s^2} (3.9 s)^2

y=73.67 m

6 0
2 years ago
The gold foil experiment led to the conclusion that each atom in the foil was composed mostly of empty space because most alpha
katovenus [111]

Answer:

(1) passed through the foil

Explanation:

Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.

  • When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
  • While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
  • And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these  conclusions were made based upon the spot of glow on the fluorescent screen.

5 0
2 years ago
Read 2 more answers
A particular planet has a moment of inertia of 9.74 × 1037 kg ⋅ m2 and a mass of 5.98 × 1024 kg. Based on these values, what is
malfutka [58]

Answer:  A) 6.38(10)^{6} m

Explanation:

The equation for the moment of inertia I of a sphere is:

I=\frac{2}{5}mr^{2} (1)

Where:

I=9.74(10)^{37}kg m^{2} is the moment of inertia of the planet (assumed with the shape of a sphere)

m=5.98(10)^{24}kg is the mass of the planet

r is the radius of the planet

Isolating r from (1):

r=\sqrt{\frac{5I}{2m}} (2)

Solving:

r=\sqrt{\frac{5(9.74(10)^{37}kg m^{2})}{2(5.98(10)^{24}kg)}} (3)

Finally:

r=6381149.077m \approx 6.38(10)^{6} m

Therefore, the correct option is A.

4 0
1 year ago
Other questions:
  • A box weighing 46 newtons rests on an incline that makes an angle of 25° with the horizontal. What is the magnitude of the compo
    5·1 answer
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • Boat A and Boat B have the same mass. Boat A's velocity is three times greater than that of Boat B. Compared to
    7·1 answer
  • Technician A says that the pressure differential switch may need to be re-centered after bleeding the brakes. Technician B says
    11·1 answer
  • A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where
    15·1 answer
  • Two golf carts have horns that emit sound with a frequency of 394 Hz. The golf carts are traveling toward one another, each trav
    7·1 answer
  • A projectile is launched from the ground with an initial velocity of 12ms at an angle of 30° above the horizontal. The projectil
    15·2 answers
  • 15 PLEASE HELP
    7·1 answer
  • Two motorcycles travel along a straight road heading due north. At t = 0 motorcycle 1 is at x = 50 m and moves with a constant s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!