answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
5

A box weighing 46 newtons rests on an incline that makes an angle of 25° with the horizontal. What is the magnitude of the compo

nent of the box’s weight perpendicular to the incline?
(1)19 N
(2)21 N
(3)42 N
(4)46 N
Physics
1 answer:
saul85 [17]2 years ago
8 0

The magnitude of the component of the box’s weight perpendicular to the incline can be olve using the formula:

F = wcos(a)

Where F is the box’s weight perpendicular to the incline

W is the weight of the box

A is the angle of the incline

F = (46)cos(25)

F = 42 N

You might be interested in
What is the threshold frequency for sodium metal if a photon with frequency 6.66 × 1014 s−1 ejects a photon with 7.74 × 10−20 J
FrozenT [24]

Answer:

5.5 × 10^14 Hz or s^-1

no orange light has less frequency so no photoelectric effect

Explanation:

hf = hf0 + K.E

HERE h is Planck 's constant having value 6.63 × 10 ^-34 J s

f is frequency of incident photon and f0 is threshold frequency

hf0 = hf- k.E

6.63 × 10 ^-34 × f0 = 6.63 × 10 ^-34× 6.66 × 10^14 - 7.74× 10^-20

6.63 × 10 ^-34 × f0 = 3.64158×10^-19

                           f0 = 3.64158×10^-19/ 6.63 × 10 ^-34

                           f0 = 5.4925 × 10^14

                            f0 =5.5 × 10^14 Hz or s^-1

frequency of orange light is 4.82 × 10^14 Hz which is less than threshold frequency hence photo electric effect will not be observed for orange light

8 0
2 years ago
If you have to apply 40n of force on a crowbar to lift a rock that weights 400n, what is the actual mechanical advantage of the
Mrrafil [7]
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:
MA= \frac{F_{out}}{F_{in}}
For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
MA= \frac{400 N}{40 N}=10
3 0
2 years ago
An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
Otrada [13]
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table. 
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. 
I = 7/5*mR^2 M = 7/5*m 
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2 
7 0
2 years ago
One end of a rope is tied to the handle of a horizontally-oriented and uniform door. a force fis applied to the other end of the
sergeinik [125]
<span>Answer:The weight of the door creates a CCW torque given by Tccw = 145 N*3.13 m / 2 You need a CW torque that's equal to that Tcw = F*2.5 m*sin20</span>
4 0
2 years ago
Read 2 more answers
A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
Anna007 [38]

Answer:

\mu_k = \frac{2(vt - L)}{(g + a) t^2}

Explanation:

As we know that backpack is kicked on the rough floor with speed "v"

So here as per force equation in vertical direction we know that

N - mg = ma

so normal force on the block is given as

N = mg + ma

now the magnitude of kinetic friction on the block is given as

F_f = \mu N

F_f = \mu (mg + ma)

now when bag is sliding on the floor then net deceleration of the block due to friction is given as

a = - \frac{F_f}{m}

a = -\mu_k(g + a)

now we know that bag hits the opposite wall at L distance away in time t

so we have

d = v t + \frac{1}{2}at^2

L = vt - \frac{1}{2}(\mu_k)(g + a) t^2

\mu_k = \frac{2(vt - L)}{(g + a) t^2}

8 0
1 year ago
Other questions:
  • jack wants to find out which laundry detergent cleans the best ( Gain, Tide, or Purex). So, he takes a cotton sheet and cuts it
    11·2 answers
  • A 6.5 l sample of nitrogen at 25◦c and 1.5 atm is allowed to expand to 13.0 l. the temperature remains constant. what is the fin
    14·1 answer
  • Kate is working on a project in her tech education class. She plans to assemble a fan motor. Which form of energy does the motor
    11·1 answer
  • Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the
    6·2 answers
  • A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
    11·1 answer
  • Two parallel plates are a distance apart with a potential difference between them. a point charge moves from the negatively char
    7·1 answer
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
    12·1 answer
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!