answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
2 years ago
10

Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta

te does the motion of the birds most closely model?
melting
vaporization
deposition
sublimation
Physics
2 answers:
weqwewe [10]2 years ago
8 0

Answer:

Number 3, deposition. Does this help?

Explanation:

Lapatulllka [165]2 years ago
5 0
Think it deposition
You might be interested in
An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which
katen-ka-za [31]

Apparent frequency heard by the staff: 389 Hz

Explanation:

The phenomenon described in this situation is called Doppler effect.

Doppler effect occurs when there is a source emitting a wave in relative motion with respect an observer. In such situation, the frequency of the wave as perceived by the observer ("apparent frequency") is shifted from the real frequency of the sound ("proper frequency"). In particular:

- The observer perceives a higher frequency if the source is moving towards them

- The observer perceives a lower frequency if the source is moving away from them

The formula to calculate the apparent frequency in the Doppler effect is

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the proper frequency

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if they are moving towards the source, negative if moving away)

v_s is the velocity of the source (positive if it is moving away, negative if moving towards the observer)

First of all, in this problem we have to calculate the proper frequency of the sound wave emitted from the ambulance; we have:

v = 343 m/s (speed of sound wave)

\lambda=80 cm = 0.80 m (wavelength)

So the proper frequency is

f=\frac{v}{\lambda}=\frac{343}{0.80}=429 Hz

Now we can calculate the apparent frequency heard by the staff at the hospital when the ambulance moves away; we have:

v_s = +35.0 m/s (velocity of the ambulance)

v_o = 0 (velocity of the staff)

Substituting,

f'=\frac{343+0}{343+35}(429)=389 Hz

Learn more about frequency and wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

4 0
1 year ago
A child’s toy rake is held so that its resistance length is 0.85 meters. If the mechanical advantage is 0.43, what is the effort
mart [117]

Answer:

1.28

Explanation:

7 0
1 year ago
A particle moving in the x direction is being acted upon by a net force F(x)=Cx2, for some constant C. The particle moves from x
elixir [45]

Answer:

Change in kinetic energy is ( 26CL³)/3

Explanation:

Given :

Net force applied, F(x) = Cx²  ....(1)

Displacement of the particle from xi = L to xf = 3L.

The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.

That is,

ΔK = W = ∫F·dx

Substitute equation (1) in the above equation.

ΔK =  ∫Cx²dx

The limit of integration from xi = L to xf = 3L, so

\Delta K=\frac{C}{3}(x_{f} ^{3} - x_{i} ^{3})

Substitute the values of xi and xf in the above equation.

\Delta K=\frac{C}{3}((3L) ^{3} - L ^{3})

\Delta K=\frac{C}{3}\times26L^{3}

5 0
2 years ago
If the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal
iVinArrow [24]

Answer:

xcritical = d− m1 /m2 ( L /2−d)

Explanation: the precursor to this question will had been this

the precursor to the question can be found online.

ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)

. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces

smallest possible value of x such that the bar remains stable (call it xcritical)

∑τA = 0 = m2g(d− xcritical)− m1g( −d)

xcritical = d− m1 /m2 ( L /2−d)

6 0
1 year ago
You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
katrin [286]
If the car in the opposite direction turns the signal on your vehicle, then it is only likely to give way and let him or her turn before you make your turn because he or she is in the right of way and by doing this, it will prevent any complication from happening and to be able to show respect and politeness in driving.
6 0
2 years ago
Other questions:
  • A boy pulls his toy on a smooth horizontal surface with a rope inclined at 60 degrees to the horizontal. If the effective force
    9·2 answers
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • The air in tires can support a car because gases __________.
    5·1 answer
  • While a roofer is working on a roof that slants at 38.0 ∘ above the horizontal, he accidentally nudges his 95.0 n toolbox, causi
    13·1 answer
  • 61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A
    5·1 answer
  • A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
    13·1 answer
  • A wave with an amplitude of 9.3 mm is traveling along a string whose linear mass density is 230 g/m and whose tension is 65 N. I
    7·1 answer
  • The discovery and characterization of cathode rays was important in the development of the atomic theory because
    8·1 answer
  • Two sinusoidal waves travel along the same string. They have the same wavelength and frequency. Their amplitudes are ym1 = 2.5 m
    5·1 answer
  • Dźwig podniósł kontener o masie m = 80 kg na wysokość h = 10 m. Pierwsze 5 m kontener przebył z przy-
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!