Answer:
Part a)
the tension force is equal to the weight of the crate
Part b)
tension force is more than the weight of the crate while accelerating upwards
tension force is less than the weight of crate if it is accelerating downwards
Explanation:
Part a)
When large crate is suspended at rest or moving with uniform speed then it is given as

here since speed is constant or it is at rest
so we will have


so the tension force is equal to the weight of the crate
Part b)
Now let say the crate is accelerating upwards
now we can say


so tension force is more than the weight of the crate
Now if the crate is accelerating downwards


so tension force is less than the weight of crate if it is accelerating downwards
Answer:

Explanation:
Given that initially ball moves in the horizontal direction ,it means that the velocity in the vertical direction is zero.
Horizontal distance = 13 m
Vertical distance = 57 cm
Lets take time to cover 57 cm distance in vertical direction is t.
We know that g is the constant acceleration in the vertical direction so we can apply the equation of motion in the vertical direction.

Here 
S= 57 cm

t=0.34 s
Now in the horizontal direction

Here x=13 m
t= 0.34 s
So


So the initial speed of ball is 38.13 m/s.
<u>Given that</u>
mass (m) = 1300 Kg ,
height (h) = 1500 m
Determine the potential energy ?
P.E = m × g × h
= 1300 × 9.81 × 1500
= 19129500 Joules
= 19129.5 KJ
Answer:
Check the explanation
Explanation:
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
The image is virtual
The image is upright
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
Kindly check the diagram in the attached image below.
Explanation:
It is given that,
Mass of Madeleine, 
Initial speed of Madeleine,
(due east)
Final speed of Madeleine,
(due west)
Mass of Buffy, 
Final speed of Buffy,
(due east)
Let
is the Buffy's velocity just before the collision. Using the conservation of linear momentum as :



So, the initial speed of the Buffy just before the collision is 7.13 m/s and it is moving due west. Hence, this is the required solution.