By wave particle duality.
Wavelength , λ = h / mv
where h = Planck's constant = 6.63 * 10⁻³⁴ Js, m = mass in kg, v = velocity in m/s.
m = 1kg, v = 4.5 m/s
λ = h / mv
λ = (6.63 * 10⁻³⁴) /(1*4.5)
λ ≈ 1.473 * 10⁻³⁴ m
Option D.
Answer;
- 15 J
Explanation;
-Potential energy is defined as mechanical energy, stored energy, or energy caused by its position.
-For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m /s² at the surface of the earth) and h is the height in meters.
Potential energy of the rabbit at the peak of its height is
PE = (3)(10)(0.5) = 15 J
(around 14.7 but because energy is lost, it is less than that)
Answer:
the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south
Explanation:
given information:
Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus
A= 27
Ax = 27 sin 60 = - 23.4
Ay = 27 cos 60 = 13.5
Jane walks 16.0 m in a direction 30.0 ∘ south of west, so
B = 16
Bx = 16 cos 30 = -13.9
By = 16 sin 30 = -8
the direction that should be walked by Ricardo to go directly to Jane
R = √A²+B² - (2ABcos60)
= √27²+16² - (2(27)(16)(cos 60))
= 23.52 m
now we can use the sines law to find the angle
tan θ = 
= By - Ay/Bx -Ax
= (-8 - 13.5)/(-13.9 - (-23.4))
θ = 90 - (-8 - 13.5)/(-13.9 - (-23.4))
= 24° east of south
Answer:1.63 m
Explanation:
Given
mass of block 
inclination 
Amount of work done 
block slides a distance s along the Plane
Work done =change in Potential Energy
Increase in height of block is 
Change in Potential Energy 



Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15