Answer:
y= 240/901 cos 2t+ 8/901 sin 2t
Explanation:
To find mass m=weighs/g
m=8/32=0.25
To find the spring constant
Kx=mg (given that c=6 in and mg=8 lb)
K(0.5)=8 (6 in=0.5 ft)
K=16 lb/ft
We know that equation for spring mass system
my''+Cy'+Ky=F
now by putting the values
0.25 y"+0.25 y'+16 y=4 cos 20 t ----(1) (given that C=0.25 lb.s/ft)
Lets assume that at steady state the equation of y will be
y=A cos 2t+ B sin 2t
To find the constant A and B we have to compare this equation with equation 1.
Now find y' and y" (by differentiate with respect to t)
y'= -2A sin 2t+2B cos 2t
y"=-4A cos 2t-4B sin 2t
Now put the values of y" , y' and y in equation 1
0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t
So by comparing the coefficient both sides
30 A+ B=8
A-30 B=0
So we get
A=240/901 and B=8/901
So the steady state response
y= 240/901 cos 2t+ 8/901 sin 2t