Answer:
Explanation:
It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.
Let in equilibrium , tension in rope be T
For balancing Joe
T = M g
For balancing Simon
friction + T = mgsinθ
μmgcosθ+T = mgsinθ
μmgcosθ+Mg = mgsinθ
M = (msinθ - μmcosθ)
M = m(sinθ - μcosθ)
The collision is a form of inelastic collision because the
it forms a single mass after is collides. So it can be solve by momentum
balance
( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06
kg ) v
V = 50 m/s
So the kinetic energy lost is
KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )
KE = 75 J
Answer:
During convection, hot material expands & rises then moves to the side and cools & sinks. this circular pattern is called a convection current.
Explanation:
Convection is one of the three methods of transfer of heat. It occurs only in fluids (liquids or gases).
Convection occurs when there is a source of heat that heats a fluid, such as in a boiling pot of water. The water which is on the bottom of the pot becomes warmer before than the water at the top (because it is closer to the flame), and so it becomes less dense: for this reason, it expands and it becomes rising. On the contrary, the water on top is colder, so it is more dense and starts sinking, replacing the warmer water. As the new part of water gets warmer, it starts rising, and so the process is continuously repeated. This circular current is called convection current.
Answer:
The frequency of the signal is 2 GHz
Explanation:
Given;
period of the clock signal, T = 500 ps = 500 x 10⁻¹² s
the frequency of the signal is given by;

F = 2 GHz
Therefore, the frequency of the signal is 2 x 10⁹ Hz or 2 GHz
Answer:
Time period for first satellites 24.46 days and for second satellites 37.67 days
Explanation:
Given :
Distance of first satellites
m
Distance of second satellites
m
Distance of charon
m
Time period of charon
days
From the kepler's third law,
Square of the time period is proportional to the cube of the semi major axis.


For first satellites,


days
For second satellites,


days
Therefore, time period for first satellites = 24.46 days and for second satellites 37.67 days