Answer:

Explanation:
As we know by force equation that force along the inclined planed due to gravity is given as

so the acceleration due to gravity along the plane is given as

now we have



now we know that



Answer:
h=20.66m
Explanation:
First we need the speed when the cord starts stretching:


This will be our initial speed for a balance of energy.
By conservation of energy:

Where
is your height at its maximum elongation
is the height of the bridge
is the length of the unstretched bungee cord

Solving for h:
and
Since 99m is higher than the initial height of 79m, we discard that value.
So, the final height above water is 20.66m
Answer:
This question is incomplete, the options are:
A) The object absorbs most white light and refracts most green light.
B) The object refracts most white light and absorbs most green light.
C) More green light is absorbed while more red and blue light is reflected.
D) More green light is reflected while more red and blue light is absorbed.
The answer is D.
Explanation:
Light is an electromagnetic wave that contains different colours at different wavelength. The colour of light that is seen depends on the wavelength of light that is REFLECTED, while other wavelengths of light are ABSORBED. This feature is dependent on the properties of each object that received the sunlight.
For example, an object will appear GREEN because it has properties that enables it to REFLECT most of the GREEN LIGHT but absorbs most of the RED AND BLUE LIGHT in the sunlight passing through the object.
Answer:
vB' = 0.075[m/s]
Explanation:
We can solve this problem using the principle of linear momentum conservation, which tells us that momentum is preserved before and after the collision.
Now we have to come up with an equation that involves both bodies, before and after the collision. To the left of the equal sign are taken the bodies before the collision and to the right after the collision.

where:
mA = 0.355 [kg]
vA = 0.095 [m/s] before the collision
mB = 0.710 [kg]
vB = 0.045 [m/s] before the collision
vA' = 0.035 [m/s] after the collision
vB' [m/s] after the collison.
The signs in the equation remain positive since before and after the collision, both bodies continue to move in the same direction.
![(0.355*0.095)+(0.710*0.045)=(0.355*0.035)+(0.710*v_{B'})\\v_{B'}=0.075[m/s]](https://tex.z-dn.net/?f=%280.355%2A0.095%29%2B%280.710%2A0.045%29%3D%280.355%2A0.035%29%2B%280.710%2Av_%7BB%27%7D%29%5C%5Cv_%7BB%27%7D%3D0.075%5Bm%2Fs%5D)