Answer:
He can throw it away from himself.
Explanation:
Newtons Third Law says that everything has an equal, yet opposite reaction on other objects.
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m
<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Answer:
Statement 1) False
Statement 2) False
Statement 3) True
Explanation:
The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is

Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.
Statement 1 is false since measurement of x and y positions has no relation to uncertainty.
Statement 2 is false as both the momentum components can be measured with 100% precision.
Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.
Answer:
0.647 nC
Explanation:
The force experienced by a charge due to the presence of an electric field is given by

where
q is the charge
E is the magnitude of the electric field
In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

Therefore, if the electric field magnitude is

Then the charge on each antenna would be
