answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
1 year ago
15

Where is there kinetic energy in this system?

Physics
1 answer:
Alika [10]1 year ago
6 0

Answer:

So kinetic means to move, something like that right, so the two balls that go in the air are where the kinetic energy is.

Explanation:

Hope it helps.

You might be interested in
Which statement about images is correct? a) A virtual image cannot be formed on a screen. b) A virtual image cannot be viewed by
ankoles [38]

Answer:

A). A virtual image cannot be formed on a screen.

Explanation:

A virtual image can not be formed on a screen.

For image:

1.A virtual image can be viewed by the unaided eye.

2. A real image must be erect or maybe inverted.

3.Mirrors can produce virtual as well as real image ,it depends on which type of mirror is.

4.A virtual image can be photographed.

So the option A is correct.

5 0
2 years ago
Jim stands beside a wide river and wonders how wide it is. he spots a large rock on the bank directly across from him. he then w
LuckyWell [14K]

To solve this problem, we must imagine that Jim’s initial position, the position of the rock, and Jim’s final position all connects to form a triangle. Now we can imagine that the triangle is a right triangle with the 90° angle on the initial position.

The angle of 30° is directly opposite to the length of his total stride while the width of the river is the side adjacent to the angle. Therefore can use the tan function to solve for the width of the river:

tan θ = opposite side / adjacent side

tan 30 = total stride distance / width of river

where total stride distance = 65 * 0.8 = 52 m

width of river = 52 m / tan 30

<span>width of river = 90.07 m</span>

7 0
1 year ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
1 year ago
the brightest , hottest, and most massive stars are the brilliant blue stars designated as spectral class O. if a class O star w
4vir4ik [10]

The speed is 0.956 m / s.

<u>Explanation</u>:

The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.

                   K.E = 1/2 \times m \times v^{2}

where K.E represents the kinetic energy,

           m represents the mass,

            v represents the velocity.

                  K.E = 1/2 \times m \times v^{2}

    1.10 \times 10^42 = 1/2 \times 3.26 \times 10^31 \times v^{2}

                     v^{2} = (1.10 \times 10^42 \times 2) / (3.26 \times 10^31)

                     v = 0.956 m / s.

6 0
2 years ago
Lucy has three sources of sound that produce pure tones with wavelengths of 60cm, 100cm, and 124cm.
denis23 [38]

Answer:

a) We see that the tubes of lengths 15, 45 and 75 resonate with this wavelength

b) There is resonance for the lengths 25 and 75 cm

c) Resonance occurs for tubes with length 31 and 93 cm

Explanation:

To find the length of the tube that has resonance we must find the natural frequencies of the tubes, for this at the point that the tube is closed we have a node and the open point we have a belly; in this case the fundamental wave is

              λ = 4L

The next resonance called first harmonic    λ₃ = 4L / 3

The next fifth harmonic resonance               λ₅ = 4L / 5,

WE see that the general form is                    λ ₙ= 4L / n          n = 1, 3, 5 ...

Let's use these expressions for our problem

Let's start with the shortest wavelength.

a) Lam = 60 cm

Let's look for the tube length that this harmonica gives

               L = λ n / 4

To find the shortest tube length n = 1

               L = 60 1/4

              L = 15 cm

For n = 3

              L = 60 3/4

              L = 45 cm

For n = 5

              L = 60 5/4

              L = 75 cm

For n = 7

             L = 60 7/4

             L = 105cm

We see that the tubes of lengths 15, 45 and 75 resonate with this wavelength, in different harmonics 1, 3 and 5

.b) λ = 100 cm

For n = 1

         L = 100 1/4

        L = 25 cm

For n = 3

        L = 100 3/4

       L = 75 cm

For n = 5

       L = 100 5/4

      L = 125 cm

There is resonance for the lengths 25 and 75 cm in the fundamental and third ammonium frequency

c) λ=  124 cm

       L = 124 1/4

       L = 31 cm

For the second resonance

      L = 124 3/4

      L = 93 cm

Resonance occurs for tubes with length 31 and 93 cm in the fundamental harmonics and third harmonics

8 0
2 years ago
Other questions:
  • Any ferrous metal object within or near the mri magnet has the potential of becoming a projectile. this is commonly referred to
    6·1 answer
  • Short-range forecasts tends to ________ longer-range forecasts.
    5·1 answer
  • a pebble is dropped down a well and hits the water 1.5 seconds later. using the equations for motion with constant acceleration,
    7·2 answers
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
    6·1 answer
  • Two balls of unequal mass are hung from two springs that are not identical. The springs stretch the same distance as the two sys
    12·1 answer
  • Two girls,(masses m1 and m2) are on roller skates and stand at rest, close to each other and face-to-face. Girl 1 pushes squarel
    10·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • Calculate the range of wavelengths (in m) for AM radio given its frequency range is 540 to 1,600 kHz. smaller value m larger val
    11·1 answer
  • A student determines the density, solubility, and boiling point of two liquids, Liquid 1 and Liquid 2. Then he stirs the two liq
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!