That particular strike was very roughly 2.4 km (1.5 miles) away from them.
That's if you use 340 m/s (1120 ft/sec) for the speed of sound.
But the air in the region for several thousand feet around a thunderstorm
is doing weird things to sounds that pass through it, so you can't use any
exact number for the speed of sound in a stormy area.
The only thing you can be absolutely sure of is that Johnny and his friends
need to round up their equipment and get in the house. NOW !
<h3><u>Answer</u>;</h3>
= 22°
<h3><u>Explanation</u>;</h3>
- According to Snell's law, the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. The constant value is called the refractive index of the second medium with respect to the first.
- Therefore; Sin i/Sin r = η
In this case; Angle of incidence = 90° -60° =30°, angle of refraction =? and η = 1.33
Thus;
Sin 30 / Sin r = 1.33
Sin r = Sin 30°/1.33
= 0.3759
r = Sin^-1 0.3759
= 22.08
<u>≈ 22°</u>
B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
A photoelectric cell is an electronic device which is used to convert light energy into electric energy.The operation of this device is based on photoelectric effect.
Light of suitable frequency i.e greater or equal to threshold frequency will fall on the cathode maintained at negative potential.The electron emission will take place and these electrons are drifted towards the anode which is at positive potential.
Here,only those radiations will be capable of emitting electrons irrespective of surface barrier of metals whose energy is greater than the work function.
We know that the radiation having long wavelength has least energy as energy and wavelength are inversely proportional to each other.

Here h is the Planck's constant,c is the velocity of light.
Here we have been given red light and blue light.
In the visible spectrum of radiation, the red light has longer wavelength than all other colors of light.Hence blue light has more energy as it's wavelength is less as compared to red light.
Hence, the blue light will activate the most and red the least.
The area of the top and bottom:
2πr²
Cost for top and bottom:
2πr² x 0.02
= 0.04πr²
Area for side:
2πrh
Cost for side:
2πrh x 0.01
= 0.02πrh
Total cost:
C = 0.04πr² + 0.02πrh
We know that the volume of the can is:
V = πr²h
h = 500/πr²
Substituting this into the cost equation to get a cost function of radius:
C(r) = 0.04πr² + 0.02πr(500/πr²)
C(r) = 0.04πr² + 10/r
Now, we differentiate with respect to r and equate to 0 to obtain the minimum value:
0 = 0.08πr - 10/r²
10/r² = 0.08πr
r³ = 125/π
r = 3.41 cm