answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
2 years ago
13

A baby elephant is stuck in a mud hole. to help pull it out, game keepers use a rope to apply a force f with arrowa, as part a o

f the drawing shows. by itself, however, force f with arrowa is insufficient. therefore, two additional forces f with arrowb and f with arrowc are applied, as in part b of the drawing. each of these additional forces has the same magnitude f. the magnitude of the resultant force acting on the elephant in part b of the drawing is k times larger than that in part
a. find the ratio f fa when k = 2.10. (take θ = 18.0°.) f fa = 1.05 incorrect: your answer is incorrect.
Physics
1 answer:
Julli [10]2 years ago
3 0

The two forces should be equal therefore:

2.10 * Fa = Fa + 2 * F * cos 18

simplifying the right side:

2.10 * Fa = Fa + 1.902 * F

1.10 Fa = 1.902 F

<span>F / Fa = 0.578</span>

You might be interested in
An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which
katen-ka-za [31]

Apparent frequency heard by the staff: 389 Hz

Explanation:

The phenomenon described in this situation is called Doppler effect.

Doppler effect occurs when there is a source emitting a wave in relative motion with respect an observer. In such situation, the frequency of the wave as perceived by the observer ("apparent frequency") is shifted from the real frequency of the sound ("proper frequency"). In particular:

- The observer perceives a higher frequency if the source is moving towards them

- The observer perceives a lower frequency if the source is moving away from them

The formula to calculate the apparent frequency in the Doppler effect is

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the proper frequency

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if they are moving towards the source, negative if moving away)

v_s is the velocity of the source (positive if it is moving away, negative if moving towards the observer)

First of all, in this problem we have to calculate the proper frequency of the sound wave emitted from the ambulance; we have:

v = 343 m/s (speed of sound wave)

\lambda=80 cm = 0.80 m (wavelength)

So the proper frequency is

f=\frac{v}{\lambda}=\frac{343}{0.80}=429 Hz

Now we can calculate the apparent frequency heard by the staff at the hospital when the ambulance moves away; we have:

v_s = +35.0 m/s (velocity of the ambulance)

v_o = 0 (velocity of the staff)

Substituting,

f'=\frac{343+0}{343+35}(429)=389 Hz

Learn more about frequency and wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

4 0
2 years ago
Distinguish between the terms strength, power, and endurance as they are used in weightlifting ​
motikmotik

Answer:

Yes

Explanation:

Because I know

6 0
2 years ago
Read 2 more answers
Lucy and her bike together have a mass of 120kg. She slows down from 4.5m/s to 3.5m/s. How much kinetic energy does she lose?
vovangra [49]
The kinetic energy of a moving object is given by
K= \frac{1}{2}mv^2
where m is the object's mass and v its velocity.

In our problem, the initial kinetic energy is:
K_i =  \frac{1}{2} m v_i^2 = \frac{1}{2}(120 kg) (4.5 m/s)^2=1215 J

while the final kinetic energy is:
K_f =  \frac{1}{2}mv_f^2 =  \frac{1}{2}(120 kg)(3.5 m/s)^2= 735 J

So, the kinetic energy lost by Lucy and her bike is
\Delta K = K_i - K_f = 1215 J - 735 J = 480 J
7 0
2 years ago
Haley noticed a small spot on her skin that turned out to be skin cancer. Which treatment is her doctor most likely to use?
vova2212 [387]

Answer:

Radiation therapy

Explanation:

Her doctor is more likely to use radiation therapy to irradiate the cancerous cells on the skin. The doctor uses soft x-rays to kill the cancer cells. The therapy is used even after surgery as it has the advantage of delaying the advancement of future cancers.

6 0
2 years ago
A particle moving in the x direction is being acted upon by a net force F(x)=Cx2, for some constant C. The particle moves from x
elixir [45]

Answer:

Change in kinetic energy is ( 26CL³)/3

Explanation:

Given :

Net force applied, F(x) = Cx²  ....(1)

Displacement of the particle from xi = L to xf = 3L.

The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.

That is,

ΔK = W = ∫F·dx

Substitute equation (1) in the above equation.

ΔK =  ∫Cx²dx

The limit of integration from xi = L to xf = 3L, so

\Delta K=\frac{C}{3}(x_{f} ^{3} - x_{i} ^{3})

Substitute the values of xi and xf in the above equation.

\Delta K=\frac{C}{3}((3L) ^{3} - L ^{3})

\Delta K=\frac{C}{3}\times26L^{3}

5 0
2 years ago
Other questions:
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • Fill in the blanks to correctly complete the statement. The motion of an object moving with uniform circular motion is always to
    10·2 answers
  • The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
    5·1 answer
  • The following items are positioned in sequence: A source of a beam of natural light of intensity I0, three ideal polarizers A, B
    13·1 answer
  • A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave ampli
    15·1 answer
  • A bird flying at a height of 12 m doubles its speed as it descends to a height of 6.0 m. The kinetic energy has changed by a fac
    15·1 answer
  • Consider a finite square-well potential well of width 3.1 ✕ 10-15 m that contains a particle of mass 1.8 GeV/c2. How deep does t
    9·1 answer
  • An airplane pilot wishes to fly directly westward. According to the weather bureau, a wind of 75.0 km/hour is blowing southward.
    15·1 answer
  • 5. Measure: With the lights on, click Pause. Turn on Show rulers. A. The wavelength of a longitudinal wave is equal to the dista
    9·1 answer
  • Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!