answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
2 years ago
11

Which of these is the largest? a. star b. nebula c. galaxy d. sun

Physics
2 answers:
Keith_Richards [23]2 years ago
5 0
I would say it’s between b and c
Lady_Fox [76]2 years ago
5 0
Galaxy i’m pretty sure
You might be interested in
What is an example of a renewable resource?
alukav5142 [94]

A car A house A phone they all can be renewable

6 0
2 years ago
Read 2 more answers
A 30-km, 34.5-kV, 60-Hz, three-phase line has a positive-sequence series impedance z 5 0.19 1 j0.34 V/km. The load at the receiv
zmey [24]

Answer:

(a) With a short line, the A,B,C,D parameters are:

    A = 1pu    B = 1.685∠60.8°Ω    C = 0 S    D = 1 pu

(b) The sending-end voltage for 0.9 lagging power factor is 35.96 KV_{LL}

(c) The sending-end voltage for 0.9 leading power factor is 33.40 KV_{LL}

Explanation:

(a)

Considering the short transition line diagram.

Apply kirchoff's voltage law to the short transmission line.

Write the equation showing the relations between the sending end and the receiving end quantities.

Compare the line equations with the A,B,C,D parameter equations.

(b)

Determine the receiving-end current for 0.9 lagging power factor.

Determine the line-to-neutral receiving end voltage.

Determine the sending end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

(c)

Determine the receiving-end current for 0.9 leading power factor.

Determine the sending-end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

8 0
2 years ago
A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet is 1 mm, find its final size
Margarita [4]

Answer:

The final size is approximately equal to the initial size due to a very small relative increase of 1.055\times 10^{- 7} in its size

Solution:

As per the question:

The energy of the proton beam, E = 250 GeV =250\times 10^{9}\times 1.6\times 10^{- 19} = 4\times 10^{- 8} J

Distance covered by photon, d = 1 km = 1000 m

Mass of proton, m_{p} = 1.67\times 10^{- 27} kg

The initial size of the wave packet, \Delta t_{o} = 1 mm = 1\times 10^{- 3} m

Now,

This is relativistic in nature

The rest mass energy associated with the proton is given by:

E = m_{p}c^{2}

E = 1.67\times 10^{- 27}\times (3\times 10^{8})^{2} = 1.503\times 10^{- 10} J

This energy of proton is \simeq 250 GeV

Thus the speed of the proton, v\simeq c

Now, the time taken to cover 1 km = 1000 m of the distance:

T = \frac{1000}{v}

T = \frac{1000}{c} = \frac{1000}{3\times 10^{8}} = 3.34\times 10^{- 6} s

Now, in accordance to the dispersion factor;

\frac{\delta t_{o}}{\Delta t_{o}} = \frac{ht_{o}}{2\pi m_{p}\Delta t_{o}^{2}}

\frac{\delta t_{o}}{\Delta t_{o}} = \frac{6.626\times 10^{- 34}\times 3.34\times 10^{- 6}}{2\pi 1.67\times 10^{- 27}\times (10^{- 3})^{2} = 1.055\times 10^{- 7}

Thus the increase in wave packet's width is relatively quite small.

Hence, we can say that:

\Delta t_{o} = \Delta t

where

\Delta t = final width

3 0
2 years ago
14 gauge copper wire has a diameter of 1.6 mm. what length of this wire has a resistance of 4.8ω?
Vladimir79 [104]
The relationship between resistance R and resistivity \rho is
R= \frac{\rho L}{A}
where L is the length of the wire and A its cross section.

The radius of the wire is half the diameter:
r= \frac{d}{2}= \frac{1.6 mm}{2}=0.8 mm=8\cdot 10^{-4} m
and the cross section is
A=\pi r^2 = \pi (8\cdot 10^{-4} m)^2=2.01\cdot 10^{-6} m^2

From the first equation, we can then find the length of the wire when R=4.8 \Omega (copper resistivity: \rho = 1.724 \cdot 10^{-8} \Omega m)
L= \frac{AR}{\rho}= \frac{(2.01\cdot 10^{-6} m^2)(1.724 \cdot 10^{-8} \Omega m)}{4.8 \Omega}=7.21 \cdot 10^{-15} m
4 0
2 years ago
Based on the article “Will the real atomic model please stand up?,” why did J.J. Thomson experiment with cathode ray tubes? to s
PIT_PIT [208]

Answer:

B.) to determine that electric beams in cathode ray tubes were actually made of particles

Explanation:

This is the right answer i just took the quiz on edge.

3 0
2 years ago
Other questions:
  • A shopping cart slows as it moves along a level floor. Which statement describes the energies of the cart?
    8·1 answer
  • The free-body diagram of a crate is shown. What is the net force acting on the crate? 352 N to the left 176 N to the left 528 N
    11·2 answers
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • 7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
    5·1 answer
  • The CBR method of flexible pavement design gives an idea about the:
    10·1 answer
  • A 9.0-V battery moves 20 mC of charge through a circuit running from its positive terminal to its negative terminal. How much en
    7·1 answer
  • You use a slingshot to launch a potato horizontally from the edge of a cliff with speed v0. The acceleration due to gravity is g
    13·1 answer
  • A 0.110 kg cube of ice (frozen water) is floating in glycerine. The glycerine is in a tall cylinder that has inside radius 3.70
    14·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • A proton is released from rest at the origin in a uniform electric field that is directed in the positive xx direction with magn
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!