Answer:
The tension in the rope is 281.60 N.
Explanation:
Given that,
Length = 3.0 m
Weight = 600 N
Distance = 1.0 m
Angle = 60°
Consider half of the ladder,
let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.
....(I)
.....(II)
On taking moment about base

Put the value into the formula


....(III)
We need to calculate the force for ladder


We need to calculate the tension in the rope
From equation (3)




Hence, The tension in the rope is 281.60 N.
The city monitors the steady rise of CO from various sources annually. In the year "C: 2019"<span> (rounded off to the nearest integer) will the CO level exceed the permissible limit.
If this isn't the answer, let me know and i'll figure out what it is. But I believe this is it. :) </span>
Answer:
minimum power should be used to operate the air conditioner is 4000 W
Explanation:
given data
students n = 160
power p = 125 W
COP = 5.0
to find out
what minimum power should be used
solution
we know the COP formula that is given below
COP = students × power / minimum power
minimum power = n × p / COP
put all value
minimum power = n × p / COP
minimum power = 160 × 125 / 5
minimum power = 4000 W
minimum power should be used to operate the air conditioner is 4000 W
Answer:i=300 mA
Explanation:
Given
inductance(L)=40 mH
Resistor(R)=
Voltage(V)=15 V
Time constant(
)=

current 

Current as a function of time is given by

i= 299.95 mA