Answer:
The distance between the earth and the star is increasing.
Explanation:
When we observe an object and its electromagnetic radiation has been displaced to blue, it means that it is getting closer to us, causing the light waves it emits to get closer together and its wavelength to decrease towards blue, this is knowm as blueshift.
On the contrary, when an object is rapidly moving away from us, the light waves or electromagnetic radiation it emits have been stretched from their normal wavelength to a longer wavelength, towards the red part of the spectrum. This is known as redshift.
This phenomenon of changes in wavelength and frequency due to movement (whether the source approaches or moves away) is described by the Doppler effect.
So for this case because the light we perceive from the star has moved to the red part of the visible spectrum, we can conclude that it is moving away from the earth, and that the distance between the star and the earth is increasing.
Answer:
A) and B) are correct.
Explanation:
If the object is at rest, it means that no net force is exerted on it.
As the object experiences a downward gravitational force from Earth, in order to be at rest, it must experience an upward force with the same magnitude as the gravitational force on the object.
This force is supplied by the normal force, which can adopt any value in order to meet the condition imposed by Newton´s 2nd Law, and is always perpendicular to the surface on which the object is placed (in this case, the ground).
At a molecular level, this normal force is supplied by the bonded molecules of the ground that behave like small springs being compressed by the molecules of the object, exerting an upward restoring force upward on them.
So, the statements A) and B) are true.
The correct answer is letter C. SWOT analysis. The cluster of decisions that managers make to assist the organization to achieve its goals is known as SWOT Analysis.
Here are the choices.A. Strategy B. Scenario planning C. SWOT analysis D. Diversification E. Related diversification
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>