answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denpristay [2]
2 years ago
11

If an electromagnetic wave has components Ey = E0 sin(kx - ωt) and Bz = B0 sin(kx - ωt), in what direction is it traveling?

Physics
1 answer:
fomenos2 years ago
8 0

Answer:

Its traveling in the +x direction

Explanation:

The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.

You might be interested in
A projectile is launched at an angle of 60° from the horizontal and at a velocity of
gayaneshka [121]

Answer:

60*12.0= 720 = v/60 * 12.0 squared which is 1,728

Explanation:

Horizontal velocity component: Vx = V * cos(α)

5 0
2 years ago
answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
Natasha2012 [34]

Answer:

4.8967m

Explanation:

Given the following data;

M = 0.2kg

∆p = 0.58kgm/s

S(i) = 2.25m

Ratio h/w = 12/75

Firstly, we use conservation of momentum to find the velocity

Therefore, ∆p = MV

0.58kgm/s = 0.2V

V = 0.58/2

V = 2.9m/s

Then, we can use the conservation of energy to solve for maximum height the car can go

E(i) = E(f)

1/2mV² = mgh

Mass cancels out

1/2V² = gh

h = 1/2V²/g = V²/2g

h = (2.9)²/2(9.8)

h = 8.41/19.6 = 0.429m

Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.

h/w = 0.429/x

X = 0.429×75/12

X = 2.6815

Therefore, by Pythagoreans rule

S(ramp) = √2.68125²+0.429²

S(ramp) = 2.64671

Finally, S(t) = S(ramp) + S(i)

= 2.64671+2.25

= 4.8967m

3 0
2 years ago
A force of 150 N accelerates a 25 kg wooden chair across a wood floor at 4.3 m/s2 . How big is the frictional force on the block
solniwko [45]
We can first calculate the net force using the given information.

By Newton's second law, F(net) = ma:

F(net) = 25 * 4.3 = 107.5

We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):

f = F(net) - F(app) = 150 - 107.5 = 42.5 N

Now we can calculate the coefficient of friction, u, using the normal force, F(N):

f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
4 0
2 years ago
Two objects are dropped from rest from the same height. Object A falls through a distance Da and during a time t, and object B f
stiv31 [10]

Answer:

Da=(1/4)Db

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

When s = Da, t = t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times t^2\\\Rightarrow Da=\frac{1}{2}at^2

When s = Db, t = 2t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times (2t)^2\\\Rightarrow Db=\frac{1}{2}a4t^2

Dividing the two equations

\frac{Da}{Db}=\frac{\frac{1}{2}at^2}{\frac{1}{2}a4t^2}=\frac{1}{4}\\\Rightarrow \frac{Da}{Db}=\frac{1}{4}\\\Rightarrow Da=\frac{1}{4}Db

Hence, Da=(1/4)Db

3 0
2 years ago
Case 1: A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t₁ = 11.9 seconds to get
olga_2 [115]

Answer:

Part a)

\omega = 8.17 rad/s

Part b)

N = 7.74 rev

Part c)

\alpha = 0.69 rad/s^2

Part d)

\alpha = 0.48 rad/s^2

Part e)

t = 9.14 s

Explanation:

Part a)

Angular speed is given as

\omega = 2\pi f

\omega = 2\pi(\frac{78}{60})

\omega = 8.17 rad/s

Part b)

Since turn table is accelerating uniformly

so we will have

\theta = \frac{\omega_f + \omega_i}{2} t

\theta = \frac{8.17 + 0}{2}(11.9)

2N\pi = 48.6

N = 7.74 rev

Part c)

angular acceleration is given as

\alpha = \frac{\omega_f - \omega_i}{t}

\alpha = \frac{8.17 - 0}{11.9}

\alpha = 0.69 rad/s^2

Part d)

When its angular speed changes to 120 rpm

then we will have

\omega_2 = 2\pi (\frac{120}{60})

\omega_2 = 12.56 rad/s

number of turns revolved is 15 times

so we have

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

12.56^2 - 8.17^2 = 2\alpha (2\pi\times 15)

\alpha = 0.48 rad/s^2

Part e)

now for uniform acceleration we have

\omega_f - \omega_i = \alpha t

12.56 - 8.17 = 0.48 t

t = 9.14 s

7 0
2 years ago
Other questions:
  • A truck initially traveling at a speed of 22 meters per second increases speed at a constant rate of 2.4 meters per second^2 for
    8·1 answer
  • A clock has radius of 0.5m. The outermost point on its minute hand travels along the edge. What is its tangential speed?
    11·1 answer
  • Do the data for the first part of the experiment support or refute the first hypothesis? Be sure to explain your answer and incl
    7·2 answers
  • A 15.0-Ω resistor and a coil are connected in series with a 6.30-V battery with negligible internal resistance and a closed swit
    14·1 answer
  • If a freely suspended vertical spring is pulled in downward direction and then released, which type of wave is produced in the s
    9·2 answers
  • A flywheel with a very low friction bearing takes 1.6 h to stop after the motor power is turned off. The flywheel was originally
    6·1 answer
  • Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
    11·2 answers
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • A student wants to investigate the motion of a ball by conducting two different experiments, as shown in Figure 1 and Figure 2 a
    7·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!