Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
Answer:
4.8967m
Explanation:
Given the following data;
M = 0.2kg
∆p = 0.58kgm/s
S(i) = 2.25m
Ratio h/w = 12/75
Firstly, we use conservation of momentum to find the velocity
Therefore, ∆p = MV
0.58kgm/s = 0.2V
V = 0.58/2
V = 2.9m/s
Then, we can use the conservation of energy to solve for maximum height the car can go
E(i) = E(f)
1/2mV² = mgh
Mass cancels out
1/2V² = gh
h = 1/2V²/g = V²/2g
h = (2.9)²/2(9.8)
h = 8.41/19.6 = 0.429m
Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.
h/w = 0.429/x
X = 0.429×75/12
X = 2.6815
Therefore, by Pythagoreans rule
S(ramp) = √2.68125²+0.429²
S(ramp) = 2.64671
Finally, S(t) = S(ramp) + S(i)
= 2.64671+2.25
= 4.8967m
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Explanation:
Part a)
Angular speed is given as



Part b)
Since turn table is accelerating uniformly
so we will have




Part c)
angular acceleration is given as



Part d)
When its angular speed changes to 120 rpm
then we will have


number of turns revolved is 15 times
so we have



Part e)
now for uniform acceleration we have


