answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
2 years ago
10

A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo

llowing statements are true when the system undergoes small oscillations?
Check all that apply.

A. The period is inversely proportional to the suspended mass.
B. The period is proportional to the square root of the length of the wire.
C. The period is independent of the suspended mass.
D. The period is proportional to the suspended mass.
E. The period is independent of the length of the wire.
F. The period is inversely proportional to the length of the wire.
Physics
1 answer:
jarptica [38.1K]2 years ago
4 0

Answer:

- The period is independent of the suspended mass.

- The period is proportional to the square root of the length of the wire.

Explanation:

A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the following statements are true when the system undergoes small oscillations?

Check all that apply.

A. The period is inversely proportional to the suspended mass.

B. The period is proportional to the square root of the length of the wire.

C. The period is independent of the suspended mass.

D. The period is proportional to the suspended mass.

E. The period is independent of the length of the wire.

F. The period is inversely proportional to the length of the wire.

Simple harmonic motion is periodic motion under the action of a restoring force that is directly proportional to the displacement from equilibrium

from the relation of period T

T=2\pi \sqrt{l/g}

from the above formula , it can be concluded that

C. The period is independent of the suspended mass

B.The period is proportional to the square root of the length of the wire.

You might be interested in
A 1.15-kg mass oscillates according to the equation x = 0.650 cos(8.40t) where x is in meters and t in seconds. Determine (a) th
zheka24 [161]

Answer:

(a) A = 0.650 m

(b) f = 1.3368 Hz

(c) E = 17.1416 J

(d)  K = 11.8835 J

     U = 5.2581 J

Explanation:

Given

m = 1.15 kg

x = 0.650 cos (8.40t)

(a) the amplitude,

A = 0.650 m

(b) the frequency,

if we know that

ω = 2πf = 8.40    ⇒   f = 8.40 / (2π)

⇒   f = 1.3368 Hz

(c) the total energy,

we use the formula

E = m*ω²*A² / 2

⇒  E = (1.15)(8.40)²(0.650)² / 2

⇒  E = 17.1416 J

(d) the kinetic energy and potential energy when x = 0.360 m.

We use the formulas

K = (1/2)*m*ω²*(A² - x²)       (the kinetic energy)

and

U = (1/2)*m*ω²*x²              (the potential energy)

then

K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)

⇒  K = 11.8835 J

U = (1/2)*(1.15)*(8.40)²*(0.360)²

⇒  U = 5.2581 J

4 0
2 years ago
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
2 years ago
A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-
andreyandreev [35.5K]

The resultant static friction force is equal to 20 N to the left.

Why?

I'm assuming that you forgot to write the question of the exercise, so,  I will try to complete it:

"A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-n force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate?"

So, if we are going to calculate the resulting static friction force, it means that there is no movement, we must remember that the friction coefficient will give us the maximum force before the crate starts to move.

We can calculate the static friction force by using the following formula:

Fr=F(appliedforce)

Since the crate is not moving (static), the static friction force acting on the crate will be equal to the applied force.

Calculating we have:

Fr=F(appliedforce)

Fr=20N

Hence, the static friction force is equal to 20 N to the left (since the applied force is acting to the right)

So,

FrictionForce=AppliedForce

Since the static friction force is equal to the applied force, the crate does not start to move.

Have a nice day!

8 0
2 years ago
Mars has two moons, Phobos and Deimos. Phobos orbits Mars at a distance of 9380 km from Mars's center, while Deimos orbits at 23
Sloan [31]

Answer:

The ratio is   \frac{T_1}{T_2}  = 3.965

Explanation:

From the question we are told that

   The  radius of Phobos orbit is  R_2 =  9380 km

    The radius  of Deimos orbit is  R_1  =  23500 \  km

Generally from Kepler's third law

    T^2 =  \frac{ 4 *  \pi^2 *  R^3}{G * M  }

Here M is the mass of Mars which is constant

        G is the gravitational  constant

So we see that \frac{ 4 *  \pi^2  }{G * M  } =  constant

   

    T^2 = R^3   *  constant      

=>  [\frac{T_1}{T_2} ]^2 =  [\frac{R_1}{R_2} ]^3

Here T_1 is the period of Deimos

and  T_1 is the period of  Phobos

So

      [\frac{T_1}{T_2} ] =  [\frac{R_1}{R_2} ]^{\frac{3}{2}}

=>    \frac{T_1}{T_2}  =  [\frac{23500 }{9380} ]^{\frac{3}{2}}]

=>    \frac{T_1}{T_2}  = 3.965

   

8 0
2 years ago
5. A wave with peaks separated by .34 m has a wavelength of ________________m.
Eduardwww [97]

Answer: 0.17 I think

Explanation:

I asked a doctor

8 0
2 years ago
Other questions:
  • For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
    13·1 answer
  • A spring has a spring constant of 48 N/m. The end of the spring hangs 8 m above the ground. How much weight can be placed on the
    7·2 answers
  • A wildlife researcher is tracking a flock of geese. The geese fly 4.0 km due west, then turn toward the north by 40° and fly ano
    13·1 answer
  • A slender rod is 80.0 cm long and has mass 0.370 kg . A small 0.0200-kg sphere is welded to one end of the rod, and a small 0.05
    5·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • if a toaster transfers 100 joules of energy every ten seconds, what is the power rating of the toaster include the units in your
    13·2 answers
  • Which of these has the most kinetic energy
    5·2 answers
  • 3. The expression 0.62 x10^3 is equivalent to...
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!