answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
2 years ago
10

A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo

llowing statements are true when the system undergoes small oscillations?
Check all that apply.

A. The period is inversely proportional to the suspended mass.
B. The period is proportional to the square root of the length of the wire.
C. The period is independent of the suspended mass.
D. The period is proportional to the suspended mass.
E. The period is independent of the length of the wire.
F. The period is inversely proportional to the length of the wire.
Physics
1 answer:
jarptica [38.1K]2 years ago
4 0

Answer:

- The period is independent of the suspended mass.

- The period is proportional to the square root of the length of the wire.

Explanation:

A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the following statements are true when the system undergoes small oscillations?

Check all that apply.

A. The period is inversely proportional to the suspended mass.

B. The period is proportional to the square root of the length of the wire.

C. The period is independent of the suspended mass.

D. The period is proportional to the suspended mass.

E. The period is independent of the length of the wire.

F. The period is inversely proportional to the length of the wire.

Simple harmonic motion is periodic motion under the action of a restoring force that is directly proportional to the displacement from equilibrium

from the relation of period T

T=2\pi \sqrt{l/g}

from the above formula , it can be concluded that

C. The period is independent of the suspended mass

B.The period is proportional to the square root of the length of the wire.

You might be interested in
An aircraft acceleration from 100m/s to 300m/s in 100 s what is acceleration​
Crank

Answer:

(300  - 100) \div 100

8 0
2 years ago
Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
AnnZ [28]

Answer:

\boxed{v=\frac {V}{\sqrt {2}}}

Explanation:

We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.

We know that frequency of simple pendulum follows that f=\frac {1}{2\pi} \sqrt {\frac {g}{l}}

Now, the speed of the father will be V=Lf= L\times (\frac {1}{2\pi} \sqrt {\frac {g}{l}}) while for the child the speed will be v=\frac {L}{2}\times (\frac {1}{2\pi} \sqrt {\frac {g}{0.5l}})

The ratio of the father’s speed to the child’s speed will be

\frac {V}{v}=\frac {\frac {L}{2}\times (\frac {1}{2\pi} \sqrt {\frac {g}{0.5l}})}{ L\times (\frac {1}{2\pi} \sqrt {\frac {g}{l}})}\\\frac {V}{v}=\frac {\sqrt {2}}{2}\\\boxed{v=\frac {V}{\sqrt {2}}}

8 0
1 year ago
One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
nika2105 [10]

Answer:

0.000003782 m

0.000001891 m

0.000001197125 m

Explanation:

\lambda = Wavelength = 248 nm

D = Diameter of beam = 1 cm

f = Focal length = 0.625 cm

The angle is given by

\theta=\dfrac{1.22\lambda}{D}

The width is given by

d=2\theta f\\\Rightarrow d=2\dfrac{1.22\lambda f}{D}\\\Rightarrow d=2\dfrac{1.22\times 248\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.000003782\ m

The required width is 0.000003782 m

Minimum resolvable line separation is given by

\dfrac{0.000003782}{2}=0.000001891\ m

The minimum resolvable line separation between adjacent lines is 0.000001891 m

when \lambda=157\ nm

d=2\dfrac{1.22\times 157\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.00000239425\ m

The new minimum resolvable line separation between adjacent lines is

\dfrac{0.00000239425}{2}=0.000001197125\ m

6 0
2 years ago
A solid steel cylinder is standing (on one of its ends) vertically on the floor. The length of the cylinder is 3.2 m and its rad
maksim [4K]

To solve this problem it is necessary to apply the concepts related to Young's Module and its respective mathematical and modular definitions. In other words, Young's Module can be expressed as

\Upsilon = \frac{F/A}{\Delta L/L_0}

Where,

F = Force/Weight

A = Area

\Delta L= Compression

L_0= Original Length

According to the values given we have to

\Upsilon_{steel} = 200*10^9Pa

\Delta L = 5.6*10^{-7}m

L_0 = 3.2m

r= 0.59m \rightarrow A = \pi r^2 = \pi *0.59^2 = 1.0935m^2

Replacing this values at our previous equation we have,

\Upsilon = \frac{F/A}{\Delta L/L_0}

200*10^9 = \frac{F/1.0935}{5.6*10^{-7}/3.2}

F = 38272.5N

Therefore the Weight of the object is 3.82kN

4 0
1 year ago
The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
faust18 [17]

Answer:

Finally current will be

i = 0.35 A

Explanation:

As we know that power of the bulb is given by the formula

P = \frac{V^2}{R}

now we have

P = 60 W

R = 240 ohm

so we have

60 = \frac{V^2}{240}

V = 120 Volts

now the current in the bulb is given as

i = \frac{V}{R}

i = \frac{120}{240} = 0.5 A

now when length of the filament is double

so the resistance of the wire also gets double

so we have

P = \frac{V^2}{R}

60 = \frac{V^2}{480}

V = 169.7 volts

now the current in the bulb is given as

V = i R

169.7 = i(480)

i = 0.35 A

8 0
2 years ago
Other questions:
  • Which equation is most likely used to determine the acceleration from a velocity vs:time graph?
    11·2 answers
  • Four students measured the acceleration of gravity. The accepted value for their location is 9.78 m/s2. Which student's measurem
    9·2 answers
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • During the filming of a movie, a car sits atop a cliff edge. To be able to get the car to move from the cliff, the workers had t
    11·1 answer
  • A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
    10·1 answer
  • Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
    13·1 answer
  • At what location in the refrigerator is the most thermal energy removed?
    12·1 answer
  • You are pulling your little sister on her sled across an icy (frictionless) surface. When you exert a constant horizontal force
    6·1 answer
  • hows a map of Olivia's trip to a coffee shop. She gets on her bike at Loomis and then rides south 0.9mi to Broadway. She turns e
    10·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!