Answer:
The answer to your question is: 15 m/s2
Explanation:
Equation x = at3 - bt2 + ct
a = 4.1 m/s3
b = 2.2 m/s2
c = 1.7 m/s
First we find x at t = 4.1 s
x = 4.1(4.1)3 - 2.2(4.1)2 + 1.7(4.1)
x = 4.1(68.921) - 2.2(16.81) + 6.97
x = 282.58 - 36.98 + 6.98
x = 252.58 m
Now we find speed
v = x/t = 252.58/ 4.1 = 61.6 m/s
Finally
acceleration = v/t = 61.6/4.1 = 15 m/s2
Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
Answer:
47.76°
Explanation:
Magnitude of dipole moment = 0.0243J/T
Magnetic Field = 57.5mT
kinetic energy = 0.458mJ
∇U = -∇K
Uf - Ui = -0.458mJ
Ui - Uf = 0.458mJ
(-μBcosθi) - (-μBcosθf) = 0.458mJ
rearranging the equation,
(μBcosθf) - (μBcosθi) = 0.458mJ
μB * (cosθf - cosθi) = 0.458mJ
θf is at 0° because the dipole moment is aligned with the magnetic field.
μB * (cos 0 - cos θi) = 0.458mJ
but cos 0 = 1
(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³
1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³
1 - cos θi = 0.3278
collect like terms
cosθi = 0.6722
θ = cos⁻ 0.6722
θ = 47.76°
<h2>Answer:</h2>
<u>This term shows the </u><u>mass of the space shuttle</u>
<h2>Explanation:</h2>
We know that the mass of the Earth is 5.972 × 10^24 kg. Similarly the sum of mass of earth and the mass of shuttle must be a greater number as compared to the number given. It simply means that the mass of earth is itself 5.972 × 10^24 kg and the value given is 3 × 105 kg so it is obvious that if was the sum then it must be greater than the mass of earth. Therefore we can say that this not the mass of earth, neither the sum of mass of earth and shuttle, but this is only the mass of space shuttle which is the last multiple choice.
Answer:
Kathmandu
Explanation:
As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.