Answer:
Ordinal
Explanation:
There are four levels of measurement which include the nominal, ordinal, interval, and ratio. The data collected above is ordinal data as it qualifies the data and still indicates the ordering of the data. It gives the observer an idea of the range of data collected or its rating although mathematical calculations may not be done with it.
The other forms of data include the nominal which simply qualifies the data, the interval which qualifies the data but which the differences between the data can be obtained, and of course the data has no starting point. The ratio scale which is similar to the interval scale but which the ratios between the data obtained can be compared.
Answer:
The acceleration of the cheetahs is 10.1 m/s²
Explanation:
Hi there!
The equation of velocity of an object moving along a straight line with constant acceleration is the following:
v = v0 + a · t
Where:
v = velocity of the object at time t.
v0 = initial velocity.
a = acceleration.
t = time
We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.
Let's convert mi/h into m/s:
50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s
Then, using the equation:
v = v0 + a · t
22.4 m/s = 0 m/s + a · 2.22 s
Solving for a:
22.4 m/s / 2.22 s = a
a = 10.1 m/s²
The acceleration of the cheetahs is 10.1 m/s²
Answer:
v₀ₓ = 15 m / s,
= 5.2 m / s
v = 15.87 m / s
, θ = 19.1
Explanation:
This is a projectile launch problem. The horizontal speed that is constant throughout the entire path is worth 15 m / s, instead the vertical speed changes in value due to the acceleration of gravity, let's look for the initial vertical speed
Vy² =
² - 2 g y
² =
² + 2 g y
= √ (
² + 2 gy
Let's calculate
= √ (1.25² + 2 9.8 1.3)
= √ (27.04)
= 5.2 m / s
The initial speed can be calculated by the initial speed
v = √ v₀ₓ² +
²
v = RA (15² + 5.2²)
v = 15.87 m / s
We look for the angle with trigonometry
tan θ = voy / vox
θ = tan⁻¹ I'm going / vox
θ = tan⁻¹ 5.2 / 15
θ = 19.1
The answer is
v₀ₓ = 15 m / s
= 5.2 m / s
Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>