answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
2 years ago
11

A uniform magnetic field of 0.50 T is directed along the positive x axis. A proton moving with a speed of 60 km s enters this fi

eld. The helical path followed by the proton shown has a pitch of 5.0 mm. Determine the angle between the magnetic field and the velocity of the proton.
Physics
1 answer:
tatuchka [14]2 years ago
3 0

Explanation:

It is given that,

Magnetic field, B = 0.5 T

Speed of the proton, v = 60 km/s = 60000 m/s

The helical path followed by the proton shown has a pitch of 5.0 mm, p = 0.005 m

We need to find the  angle between the magnetic field and the velocity of the proton. The pitch of the helix is the product of parallel component of velocity and time period. Mathematically, it is given by :

p=v_{||}\times T

p=v\ cos\theta\times \dfrac{2\pi m}{Bq}

cos\theta=\dfrac{pBq}{2\pi mv}

cos\theta=\dfrac{0.005\times 0.5\times 1.6\times 10^{-19}}{2\pi \times 1.67\times 10^{-27}\times 60000}

\theta=50.58^{\circ}

So, the angle between the magnetic field and the velocity of the proton is 50.58 degrees. Hence, this is the required solution.

You might be interested in
A helicopter travels west at 80 mph. It is moving above a car traveling on a highway at 80 mph. Given this information, you can
gavmur [86]

Answer:

d. at the same velocity

Explanation:

I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.

5 0
1 year ago
One of the Lady Spartans was falling to the ground after
dem82 [27]

Answer:

Explanation:

Given that,

A lady falling has a final velocity of 4m/s

v = 4m/s

Mass of the lady is 60kg.

m = 60kg

Using conservation of energy, the potential energy of the body from the point where the lady is dropping is converted to the final kinetic energy of the lady.

Therefore,

P.E = K.E(final) = ½mv²

P.E = ½ × 60 × 4²

P.E = 480 J.

0 0
2 years ago
A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
beks73 [17]

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

3 0
2 years ago
Read 2 more answers
Una cuerda de violin vibra con una frecuencia fundamental de 435 Hz. Cual sera su frecuencia de vibracion si se le somete a una
EleoNora [17]

Answer:

a)  f = 615.2 Hz      b)  f = 307.6 Hz

Explanation:

The speed in a wave on a string is

         v = √ T / μ

also the speed a wave must meet the relationship

          v = λ f

           

Let's use these expressions in our problem, for the initial conditions

            v = √ T₀ /μ

             √ (T₀/ μ) = λ₀ f₀

now it indicates that the tension is doubled

         T = 2T₀

          √ (T /μ) = λ f

          √( 2To /μ) = λ f

         √2  √ T₀ /μ = λ f

we substitute

         √2 (λ₀ f₀) = λ f

if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change

           λ₀ = λ

           f = f₀ √2

           f = 435 √ 2

           f = 615.2 Hz

b) The tension is cut in half

         T = T₀ / 2

         √ (T₀ / 2muy) =  f = λ f

          √ (T₀ / μ)  1 /√2 = λ f

           fo / √2 = f

           f = 435 / √2

           f = 307.6 Hz

Traslate

La velocidad en una onda en una cuerda es

         v = √ T/μ

ademas la velocidad una onda debe cumplir la relación

          v= λ f  

           

Usemos estas expresión en nuestro problema, para las condiciones iniciales

            v= √ To/μ

             √ ( T₀/μ) = λ₀ f₀

ahora nos indica que la tensión se duplica

         T = 2T₀

          √ ( T/μ) = λf

          √ ) 2T₀/μ = λ f

         √ 2 √ T₀/μ = λ f

         

substituimos  

         √2    ( λ₀ f₀)  =  λ f

si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia

                 λ₀ =  λ

           f = f₀ √2

           f = 435 √2

           f = 615,2 Hz

b)  La tension se reduce a la mitad

         T = T₀/2    

         RA ( T₀/2μ)  =  λ  f

          Ra(T₀/μ) 1/ra 2  =  λ f

           fo /√ 2 = f

           f = 435/√2

           f = 307,6 Hz

5 0
2 years ago
A 2530-kg test rocket is launched vertically from the launch pad. Its fuel (of negligible mass) provides a thrust force so that
gavmur [86]

Answer:

A = 1.4 m/s²

B = -0.10493 m/s³

a = 1.29507 m/s²

T = 28095.8271 N

T = 1.13198 W

Explanation:

t = Time taken

g = Acceleration due to gravity = 9.81 m/s²

The equation

v(t)=At+Bt^2

Differentiating with respect to time

\frac{dv}{dt}=\frac{d(At+Bt^2)}{dt}\\\Rightarrow 1.4=A+2Bt

At t = 0

1.4=A

Hence, A = 1.4 m/s²

B=\frac{v-At}{t^2}\\\Rightarrow B=\frac{2.18-1.4\times 1.8}{1.8^2}\\\Rightarrow B=-0.10493\ m/s^3

B = -0.10493 m/s³

At t = 5 seconds

a=1.4+2\times -0.010493\times 5=1.29507\ m/s^2

a = 1.29507 m/s²

T=m(a+g)\\\Rightarrow T=2530(1.29507+9.81)\\\Rightarrow T=28095.8271\ N

T = 28095.8271 N

Weight of rocket

W=2530\times 9.81=24819.9\ N

\frac{T}{W}=\frac{28095.8271}{24819.9}\\\Rightarrow \frac{T}{W}=1.13198\\\Rightarrow T=1.13198W

T = 1.13198 W

3 0
2 years ago
Other questions:
  • Which amplitude of the following longitudinal waves has the greatest energy?
    12·2 answers
  • a student wants to push a box of books with the mass of 50 kg in 3 m horizontally towards the location of the shelves where the
    11·1 answer
  • Joe pushes down the length of the handle of a 10.9 kg lawn spreader. The handle makes an angle of 45.3 ◦ with the horizontal. Jo
    9·1 answer
  • Before hanging new William Morris wallpaper in her bedroom, Brenda sanded the walls lightly to smooth out some irregularities on
    6·1 answer
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric
    14·1 answer
  • Which title best reflects the main idea of the passage? The Role of Convection in the Distribution of Earth's Energy The Role of
    10·2 answers
  • Which statement corresponds to emission spectra?
    7·1 answer
  • A piece of a metal alloy with a mass of 114 g was placed into a graduated cylinder that contained 25.0 mL of water, raising the
    13·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!