answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
2 years ago
14

Where is the steering nozzle located on a pwc?

Physics
2 answers:
Dvinal [7]2 years ago
3 0
At the rear.

PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
Tanzania [10]2 years ago
3 0

Answer:

The steering nozzle is located at the back of the unit on the PWC

Explanation:

The detail of this question is given below:

PWC: PWC stands for Personal Watercraft which is operation on some certain and specific requirements set by the PWC operator. There are two things to be noted on PWC and these are steering wheel and steering nozzle.

Steering nozzle: PWC are moved by jet drive. Through jet drive water is pushed backwards into pump and then pump forcefully injected it out under full pressure by the use of steering nozzle which is located at the back of the unit. The steering control and steering nozzle work at the same direction. If the steering control move left than the nozzle automatically turns left. In order to operation PWC, the important thing to keep in mind is that you should be well strong enough to control it because it requires a lot of power. If the engine is switch off then you will definitely lose your control over it.  

Answer Detail:

Level: High School

Subject: Physics

Keywords:

• PWC

• Steering control

• Steering nozzle

• engine

Learn more to evaluate:

PWC Control: brainly.com/question/4035935

You might be interested in
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
1 year ago
Read 2 more answers
A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an easterly direction crashes into the back of a 9 000-kg truck moving i
sukhopar [10]

Answer:

The velocity of the truck after the collision is 20.93 m/s

Explanation:

It is given that,

Mass of car, m₁ = 1200 kg

Initial velocity of the car, v_{Ci}=25\ m/s

Mass of truck, m₂ = 9000 kg

Initial velocity of the truck, v_{Ti}=20\ m/s

After the collision, velocity of the car, v_{Cf}=18\ m/s

Let v is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.

initial\ momentum=final\ momentum

1200\ kg\times 25\ m/s+9000\ kg\times 20\ m/s=1200\ kg\times 18+9000\ kg\times v

210000-21600=9000\ kg\times v

v=20.93\ m/s

So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.

8 0
1 year ago
A parallel-plate capacitor is constructed of two square plates, size L×L, separated by distance d. The plates are given charge ±
vampirchik [111]

Answer: A) 2 B) 4 C) 1

Explanation:

The Electric field from a parallel-plate capacitor  is given by:

A) E=Q/(L^2 * ε0) so if we put a charge double the final electric field is double that the original.

B) from the above expression for the electric field,  If the size of the plate is double, then the E final is four times weaker that the original.

C) If the distante between plates is doubled the final electric field is the same that initial.

3 0
2 years ago
A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
beks73 [17]

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

3 0
2 years ago
Read 2 more answers
A uniform 1.4-kg rod that is 0.75 m long is suspended at rest from the ceiling by two springs, one at each end of the rod. Both
svetlana [45]

Answer:

7 deg

Explanation:

m = mass of the rod = 1.4 kg

W = weight of the rod = mg = (1.4) (9.8) = 13.72 N

k_{L} = spring constant for left spring = 59 Nm^{-1}

k_{R} = spring constant for right spring = 33 Nm^{-1}

x_{L} = stretch in the left spring

x_{R} = stretch in the right spring

L = length of the rod = 0.75 m

\theta = Angle the rod makes with the horizontal

Using equilibrium of force in vertical direction for left spring

k_{L} x_{L} = (0.5) W\\(59) x_{L} = (0.5) (13.72)\\x_{L} = 0.116 m

Using equilibrium of force in vertical direction for right spring

k_{R} x_{R} = (0.5) W\\(33) x_{R} = (0.5) (13.72)\\x_{R} = 0.208 m

Angle made with the horizontal is given as

\theta = tan^{-1}(\frac{(x_{R} - x_{L})}{L} )\\\theta = tan^{-1}(\frac{(0.208 - 0.116)}{0.75} )\\\theta = 7 deg

3 0
2 years ago
Other questions:
  • Two disks with the same rotational inertia i are spinning about the same frictionless shaft, with the same angular speed ω, but
    8·1 answer
  • The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma
    10·1 answer
  • A 1.50-m cylinder of radius 1.10 cm is made of a complicated mixture of materials. Its resistivity depends on the distance x fro
    14·1 answer
  • Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h
    15·1 answer
  • The planet Neptune orbits the Sun. Its orbital radius is 30.130.130, point, 1 astronomical units (\text{AU})(AU)left parenthesis
    10·1 answer
  • An uncharged 30.0-µF capacitor is connected in series with a 25.0-Ω resistor, a DC battery, and an open switch. The battery has
    7·2 answers
  • You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
    6·1 answer
  • Rama's weight is 40kg. She is carrying a load of 20 kg up to a height of 20 m . What work does she do?​
    10·1 answer
  • A fundraising company agrees to donate an extra $75 for every $100 the school raises through selling cookies. Part A: What is th
    15·1 answer
  • 1. A liquid of mass 250g is heated with an electric heater. Its temperature rises from 30°C to 80°C, the specific heat capacity
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!