Answer:
A) 
B) 
Explanation:
A) In this situation we are talking about a car moving only in the X- axis, hence the velocity of the car is:

Where the unit vectors
,
and
represent the components
,
and
in the cartesian plane.
In this sense, each unit vector is defined to have a magnitude of exactly one (1).
B) Velocity is defined as the variation of position in time, if this car is moving only along the x direction we will have:

Clearing the position:



Complete Question:
Check the circuit in the file attached to this solution
Answer:
Total current = 0.056 A(From left to right)
Explanation:
Let the current in loop 1 be I₁ and the current in loop 2 be I₂
Applying KVL to loop 1
30 - (I₁ - I₂)500 + I₂R + 15 = 0
45 - 500I₁ - 500I₂ + RI₂ = 0
I₁ = 30mA = 0.03 A
45 - 500(0.03) - 500I₂ + RI₂ = 0
30 -500I₂ + RI₂ = 0...............(1)
Applying kvl to loop 2
-RI₂ - 15 + 10 - 400I₁ = 0
-RI₂ = 5 + 400*0.03
RI₂ = -17 ................(2)
Put equation (2) into (1)
30 -500I₂ -17 = 0
-500I₂ = 13
I₂ = -13/500
I₂ = -0.026 A
The total current in the 500 ohms resistor = I₁ - I₂ = 0.03+0.026
Total current = 0.056 A
The current will flow from left to right
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
At the rear.
PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
Answer:
4.988kW
Explanation:
According to the question, energy E extracted from the ocean breaker is directly proportional to the intensity I. It can be expressed mathematically as E ∝ I
E = kI where k is the constant of proportionality.
From the formula; k = E/I
This shows that increase in energy extracted will lead to increase in its intensity and vice versa.
If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high
E = 10kW and I = 1.20m
k = 10/1.20
k = 8.33kW/m
To know how much energy E that will be produced when they are 0.600 m high, we will use the same formula
k = E/I where;
k = 8.33kW/m
I = 0.600m
E = kI
E = 8.33 × 0.6
E = 4.998kW
The device will produce energy of 4.998kW when they are 0.600m high.