Answer:

Explanation:
-The only relevant force is the electrostatic force
-The formula for the electrostatic force is:

E is the electric field and q is the magnitude of the charge.
#Since the electric field is the same in both cases, and the charge of the protons and electrons have the same magnitude, you can state that the magnitude of the electric forces acting in both proton and electron are the same.

-Applying Newton's 2nd Law:



#equate the two forces:

#The equations for velocity in uniform acceleration:

#For the proton:

#For the electron:

The mass values of the proton and electron are:

The speed of the ion is therefore calculated as:

Hence, the ion's speed at the negative plate is 
Answer:
4m/s2
Explanation:
The following data were obtained from the question:
U (initial velocity) = 10m/s
V (final velocity) = 30m/s
t (time) = 5secs
a (acceleration) =?
Acceleration is the rate of change of velocity with time. It is represented mathematically as:
a = (V - U)/t
Now, with this equation i.e
a = (V - U)/t, we can calculate the acceleration of the race car as follow:
a = (V - U)/t
a = (30 - 10)/5
a = 20/5
a = 4m/s2
Therefore, the acceleration of the race car is 4m/s2
Given:
Ca = 3Cb (1)
where
Ca = heat capacity of object A
Cb = heat capacity f object B
Also,
Ta = 2Tb (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.
Let
Tf = final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.
Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb) (3)
Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb
Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb
Answer:

where
Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.
Answer:
i hope this will help you :)
Explanation:
mass=19kg
density=800kg/m³
volume=?
as we know that
density=mass/volume
density×volume=mass
volume=mass/density
putting the values
volume=19kg/800kg/m³
so volume=0.02375≈0.02m³