answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
2 years ago
13

Little Tammy lines up to tackle Jackson to (unsuccessfully) prove the law of conservation of momentum. Tammy’s mass is 34.0 kg a

nd Jackson’s is 54.0 kg. Jackson is running at a velocity of 3.0 m/s. What must Tammy’s minimum velocity be in order to stop forward momentum?
Physics
1 answer:
Naily [24]2 years ago
8 0

Answer:

So Tammy must move with speed 4.76 m/s in opposite direction of Jackson

Explanation:

As per law of conservation of momentum we know that there is no external force on it

So here we can say that initial momentum of the system must be equal to the final momentum of the system

now we have

m_1v_1 + m_2v_2 = 0

final they both comes to rest so here we can say that final momentum must be zero

now we have

34 v + 54 (3 m/s) = 0

v = -4.76 m/s

You might be interested in
your drop a coin from the top of a hundred-story building(1000m). If you ignore air resistance, how fast will it be falling righ
Ede4ka [16]

consider the motion of con from top to bottom

Y = vertical displacement = 1000 m

a = acceleration due to gravity = 9.8 m/s²

v₀ = initial velocity at the top = 0 m/s

v = final velocity at the bottom = ?

using the kinematics equation

v² = v²₀ + 2 aY

v² = 0² + 2 (9.8) (1000)

v = 140 m/s


t = time taken to hit the ground

Using the equation

v = v₀ + at

140 = 0 + 9.8 t

t = 14.3 sec

7 0
2 years ago
Read 2 more answers
A grasshopper jumps at a 65.0 degree angle at 5.42m/s. At what time does it reach its maximum height?
crimeas [40]
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.
6 0
2 years ago
Read 2 more answers
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a
serious [3.7K]

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

7 0
2 years ago
A spring balance consists of a pan that hangs from a spring. A damping force Fd = −bv is applied to the balance so that when an
Citrus2011 [14]

Answer:

b ≈ 64 Kg/s

Explanation:

Given

Fd = −bv

m = 2.5 kg

y = 6.0 cm = 0.06 m

g = 9.81 m/s²

The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).

m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):

∑Fy = 0 (↑)

k*y - W = 0    ⇒   k*y - m*g = 0   ⇒   k = m*g / y

⇒   k = (2.5 kg)*(9.81 m/s²) / (0.06 m)

⇒   k = 408.75 N/m

Hence, if

b² = 4*k*m    ⇒     b = √(4*k*m) = 2*√(k*m)

⇒     b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)

⇒     b = 63.9335 Kg/s ≈ 64 Kg/s

5 0
2 years ago
A common carnival ride, called a gravitron, is a large r = 11 m cylinder in which people stand against the outer wall. the cylin
Leya [2.2K]

Answer:

 v = 13.19 m / s

Explanation:

This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical

 

X axis

       N = m a

Centripetal acceleration is

       a = v² / r

Y Axis

      fr -W = 0

      fr = W

The force of friction is

     fr = μ N

Let's calculate

    μ (m v² / r) = mg

   μ v² / r = g

   v² = g r / μ

   v = √ (g r /μ)

   v = √ (9.8 11 / 0.62)

   v = 13.19 m / s

7 0
2 years ago
Other questions:
  • A horizontal spring with spring constant 85 n/m extends outward from a wall just above floor level. a 3.5 kg box sliding across
    8·1 answer
  • The Moon and Earth rotate about their common center of mass, which is located about RcM 4700 km from the center of Earth. (This
    7·1 answer
  • A gas station owner suspects that he is being overcharged for gasoline deliveries by a gasoline supplier. The overcharge seems p
    5·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour miles/hou
    5·2 answers
  • A box sits on a table. A short arrow labeled F subscript N points up. A short arrow labeled F subscript g points down. A long ar
    6·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
  • La luz pasa del medio A al medio B formando un ángulo de 35° con la frontera horizontal entre ambos. Si el ángulo de refracción
    7·1 answer
  • The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)
    5·1 answer
  • If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
    6·1 answer
  • A 10 kg ball moving at 13 m/s strikes a 20 kg ball at rest. after the collision the 10 kg ball is moving with a velocity of 7m/s
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!