Answer:
To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.
To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.
Explanation:
In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.
On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.
The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.
Explanation:
A projectile motion may be defined as that form of a motion that is experienced by an object or a particle which is projected near the surface of the Earth and the particle moves along the curved path subjected to gravity force only.
Thus a projectile motion is always acted upon by a constant acceleration due to gravity in the down ward direction.
In the context, Quinn shoots two particle x and y from his sling shot and he observes that both his projectiles travels in a parabola curve in the air. Both the object x and y touches the ground a distance apart from him which is known as the range and it depends upon the velocity of the projectile. Both the projectile reaches a maximum height and then drop on the ground in a parabola shape.
efficiency= [useful energy transferred ÷ total energy supply]×100%
So, [5500÷10000]×100%=0.55×100
=55%
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .